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1. INTRODUCTION 

A. Preamble 

The primary emphasis of this research is computer simulation. Computer 

simulations are used to model and analyze systems. To date, computer simulations 

have almost exclusively been written in procedural, strongly-typed languages such as 

FORTRAN or Pascal. 

Recent advancements in simulation research suggest an object-oriented 

approach to simulation languages may provide key benefits in computer simulation. 

The goal of this research is to combine the advantages of a simulation language 

written in a procedural, strongly-typed language with the benefits available through 

the object-oriented programming paradigm. 

The software developed in this research is capable of simulating systems with 

multiple servers and queues. Arrival and service distributions may be selected from 

the uniform, exponential, and normal family of distributions. Resource usage is not 

supported in the simulation program. 

B. Statement of the Problem 

Computer simulation can closely represent the real time behavior of systems 

while concurrently reducing the costs associated with data collection and study of 

real world systems. Simulation languages such as GPSS, SLAM, and many others 

have contributed significantly to simulation capabilities. 

Most of the currently available simulation languages are based on 

strongly-typed traditional programming languages such as FORTRAN. Simulation 

models using these standard programming languages are typically constructed in 
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much the same fashion as most computer programs. The user must generate line 

after line of complicated computer code. The simulation modeler must generally be 

qualified as a simulation expert as well as a computer programmer. Details that can 

not be handled by the standard constructs of the language are added as (typically) 

FORTRAN inserts to the language. 

Many of the manufacturers of simulation languages have recently recognized 

that building simulation models using standard programming languages is complex 

and results are often difficult to analyze. Few end users choose to invest the time 

and money required to generate even the simplest of simulation models. The 

complexity of simulation restricts the use of many languages to a minority of highly 

trained experts. The first natural extension to the original simulation languages was 

to add graphic or menu interfaces to the language in an effort to remove the 

programming complexity from model generation. 

The results of this effort toward reduced complexity are twofold. While 

menus and graphic interfaces have effectively reduced operational complexity of the 

programs, versatility has suffered. Some manufacturers of simulation software 

choose to exclude all programming from their languages, but can not incorporate all 

possible simulation model requirements into their menus or graphic interfaces. The 

result is a language that is not capable of adequately modeling complex systems. 

Other simulation software manufacturers retain the option of including 

external FORTRAN (or other language) inserts into the simulation model, but the 

effect is to allow the end user to use the menus or graphic interfaces for the portion 

of the modeling task that is already easy. The user must still perform the complex 

programming tasks for the difficult portions of the simulation model. 
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Another major problem with the current base of simulation languages is in 

the underlying language itself. Computer languages such as FORTRAN, BASIC, 

Pascal, C, and others, are all based on a concept known as sequential processing. 

Commands contained in the computer code must be processed one by one in a 

sequential fashion. Real-world systems, on the other hand, operate in a 

multi-process environment, where many activities occur simultaneously. In an effort 

to model real-world systems, current simulation languages utilize a built-in clock 

that is incremented by the software after all activities scheduled for a particular time 

have been completed. Only the increased processing power of computers has 

allowed simulation to mimic real-world systems with acceptable speed. The 

underlying software, however, still does not operate in a way that truly models 

real-world sytem behavior. 

Object-oriented programming is a concept developed in the 1970s. With 

object-oriented programming, data and the procedures that act on those data are 

held together as an "object." The object-oriented approach to programming 

provides some unique capabilities that are ideally suited for computer simulation. 

Current efforts to use the object-oriented approach to simulation are less than 

optimal due to the slow processing speed of available object-oriented languages and 

the difficulty of programming in an unfamiliar language. 

This research combines the advantages of simulation languages written in 

strongly-typed procedural languages with the unique capabilities of object-oriented 

programming. A review of relevant literature on simulation, object-oriented 

programming, and related topics is presented in Chapter II. 
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II. REVIEW OF RELEVANT LITERATURE 

A. Computer Simulation 

1. Preliminary concepts 

Complex systems are abundant in the world of industry, government, and a 

host of other environments. It is often useful to analyze these systems to plan, 

optimize, or otherwise modify the operation of the system. To investigate these 

systems, historical data related to system behavior could be collected and analyzed. 

If past data are not available, collection of current data is an alternative. A greater 

problem exists if the system targeted for study is not yet in existence. In the latter 

case, a model of the system could be developed. The model could then be used to 

represent the real system and the model behavior could be studied to predict the 

operation of the real system under a variety of situations. Computer simulation 

plays an important role in this modeling of systems. 

Taha [75] states that "Computer simulation should be regarded as the next 

best thing to observing a real system in operation." The use of a computer 

simulation allows system operational data to be collected over a reduced time scale 

without the necessary existence of the real system. These data may then be used to 

calculate measures of system behavior and performance. 

According to Pritsker [58], simulation models can be employed at four levels: 

• As explanatory devices to define a system or problem; 

• As analysis vehicles to determine critical elements, components, and is
sues; 

• As design assessors to synthesize and evaluate proposed solutions; 

• As predictors to forecast and aid in planning future developments. 
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Computer simulation models are often built as a mathematical 

representation of the system in question. Queueing theory is often the basis used in 

the development of the model, but is not sufficient to model the behavior of a 

complex system. Queueing theory can be used to study isolated components of a 

system, but fails to adequately represent the interactions between the various 

elements of the system. 

Simulation typically represents the system as a whole. The end result is a 

model capable of tracking all the individual processes and activities in the system. 

Data are then collected from the simulation model to analyze in appropriate fashion. 

The primary benefits of computer simulation may be summarized as follows: 

• Computer simulation allows complex systems to be modeled; 

• Data may be collected from the simulation for later analysis; 

• Time may be scaled to allow simulations of lengthy real-world operation 
of a system to be simulated in a relatively short period of computer 
simulation time; 

• Simulations of nonexistent systems can be performed; 

• Alternative operation of real system behavior can be quickly examined. 

2. Types of simulation 

The primary purpose of a computer simulation is to allow data to be gathered 

about the operation of a specific system as a function of time. Computer simulations 

are typically categorized into two distinct types: 

• Discrete simulation 

• Continuous simulation 

In a discrete simulation model, data are gathered from the simulation model 

at specific points in time, typically when a change occurs in the state of the system. 
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Conversely, continuous simulation requires that data are collected at very small 

increments in time during the execution of the simulation. 

As an example of the difference between the two types of simulation, 

consider two systems. The first system is a ticket sales outlet as illustrated in Figure 

2-1. This system is categorized as a single-server queueing system. Customers arrive 

in single fashion and wait in line for the clerk. In this model, changes in the state of 

the system can only occur when a customer arrives or when the customer completes 

service (buys a ticket). When either of these events occur, relative measures of 

system performance can be collected. Typical statistics may be the current length of 

the queue and the waiting time in the system. At all other times during the 

operation of the system, the system statistics remain unchanged, only the simulation 

clock (discussed later) will be affected. The system must only be observed at 

discrete points in time, thus the name "discrete simulation." 

Consider a second system comprised of the heating system for a large 

commercial building. The temperature must be adjusted for each area of the 

building depending on the current temperature in that area. A measure of the 

building system efficiency might be the rate of heat loss. In this case, the 

o o o o 
ARRIVALS WAITING LINE (QUEUE) 

SERVER 

DEPARTURES 

Figure 2-1. Single-server queueing model 
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temperature in each area must be continuously monitored. This situation would be 

ideal for continuous simulation. In computer simulation, it is essentially impossible 

to actually monitor a system continuously, so the observation of system dynamics is 

performed at small equal intervals of time. 

Parameters of the simulation model in question sometimes dictate that both 

discrete and continuous modeling concepts must be utilized. The term "combined 

simulation" is used to describe simulation models built with both discrete and 

continuous simulation features. 

The real world is replete with examples where both discrete and continuous 

simulation models are appropriate. Most continuous systems can be adequately 

modeled through mathematical approaches. This research emphasizes discrete 

simulation. The remainder of this discussion will concentrate on the particulars of 

discrete event simulation. 

3. Discrete event simulation 

As described previously, simulation models may be either discrete, 

continuous, or a combination of the two, depending on the manner in which change 

occurs in the variables of interest in the model. In most simulations, time is the 

independent variable. Other variables in the system are functions of time and are 

dependent variables. In discrete event simulation, statistics are collected from the 

system by monitoring the state of the system over time. 

To facilitate the collection of observations, simulations must maintain a 

"simulated clock." Because the state of the system can only change when an event 

occurs, an accurate picture of the system may be obtained by advancing the 

simulated clock from one event time to the next. The use of the simulation clock in 
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this manner is called the "next event approach" and is used in most simulation 

languages. 

According to Pritsker [58], a discrete event model can be formulated by: 

• Defining the changes in state that occur at each event time; 

• Describing the activities in which the entities in the system engage; 

• Describing the process through which the entities in the system flow. 

Three key terms used in the discussion of discrete event simulation may now 

be defined with reference to Figure 2-2: 

• Event - An occurrence which takes place at a discrete point in time which 
marks the beginning or end of an activity. 

• Activity - The time passage that occurs between the begin and end events. 

• Process - A chronological sequence of events encompassing one or more 
activities. 

4. World views 

Simulation models are often described in terms of their "world view" in 

relationship to the concepts of event, activity, and process. In order, the terms used 

Process 

Activity 

—: : • Time 
Arrival Start of End of 
Event Service Service 

Event Event 

Figure 2-2. Events, activities, and simulation processes 
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to describe alternative world views are event, activity scanning, and process 

orientation. 

If the world view is event-oriented, the system is modeled by defining the 

changes that occur at event times. The system modeler must define the events that 

will change the state of the system and then develop the appropriate simulation logic 

to correctly trigger events in a time-ordered fashion and collect the system state 

variables at the event times. 

To illustrate the event-oriented world view, again refer to Figure 2-1. 

Customers arrive and enter the waiting line. When the ticket salesperson is 

available, the next waiting customer receives service and then exits the system. The 

events in this system are then: 

• Arrival of a customer 

• Start of service 

• End of service 

The state of the system remains unchanged except when one of the 

aforementioned events occurs. The entire system can be described in terms of these 

events. The simulation clock is used to trigger an event. The simulation model logic 

is responsible for scheduling the times that future events will occur. This schedule 

of events is called the "event calendar." The advantage of the event-orientation is 

that the dynamic behavior of the system can be observed by examination of the 

system variables only at the event times. Since the number of discrete events is 

usually limited in relationship to the total simulation time, the model is generally 

simpler to construct. 
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In a simulation system built from the activity scanning orientation, the 

activities are described and the conditions which cause these activities to start and 

end are defined in the simulation logic. In the activity orientation, the simulation 

logic is no longer responsible for scheduling the events on an event calendar. 

Instead, as the simulation clock is advanced the pre-defined start and end conditions 

for activities in the model are scanned. If the conditions are met, the corresponding 

action for the activity is initiated. When the activity scanning orientation is 

implemented with a standard procedural language, each activity must be scanned 

when the simulation clock is advanced. 

Because each activity must be scanned at every clock advance, the activity 

orientation becomes inefficient for most simulation modeling problems. However, 

some aspects of the activity orientation are useful and are utilized in part by many 

simulation languages. In particular, many languages group standard sets of activities 

into single statements for inclusion in the simulation model. This approach is the 

process-orientation. 

Process-oriented simulation languages use standardized statements to track 

and model the flow of entities through the system. The control logic associated with 

these statements is automatically executed by the simulation language. The 

process-oriented simulation languages are relatively simple to utilize. Processes are 

usually associated with symbols that describe the simulation language. The modeler 

need only create a network of these symbols to develop the model. Process-oriented 

simulation languages are ideal candidates for a graphic user interface due to their 

symbolic representation. However, because the simulation language is often 

restricted to a pre-defined set of symbols, modeling flexibility is usually less than 

that of the event orientation. 
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It has been shown that simulation languages can be grouped into categories 

based on the types of simulation that they perform and the view that is used in 

creation of the simulation model. Many simulation languages have been developed 

that fit each of the defined categories. The next section provides a review of some of 

these languages, their associated implementations, and the ongoing effort to 

enhance the utility of computer simulation tools. 

B. Simulation Languages 

1. Traditional languages 

Arthur, Frendewey, Ghandforoush, and Rees [1] cite the beginning of 

computer simulation as the late 1950s. The original computer simulations typically 

consisted of FORTRAN programs written for batch operation on mainframe 

computers. In a recent study by Pratt [57], over 150 simulation languages were 

found available for microcomputers, minicomputers, and mainframe computers. 

The first widely used simulation language was GPSS (General Purpose 

Simulation System). Developed in the 1960s, GPSS remains one of the more 

popular simulation languages available. Schriber [66] writes that "much of the 

underlying logic of discrete-event simulation is built into the GPSS simulator. 

Unfortunately, this language advantage becomes a disadvantage for the model 

builder who does not understand the simulator's internal logic, and yields to the 

temptation to use GPSS blindly." The same statement can be applied to most of the 

early simulation languages. 

Another pioneer in simulation languages was SLAM (Simulation Language 

for Alternative Modeling). SLAM, a FORTRAN based simulation language, allows 

the modeler to construct simulation models based on the event, activity, or process 
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world views. SLAM contains facilities to support both discrete-event and 

continuous simulation constructs. Nearly 1000 installations of SLAM exist in 

academic, industrial, and governmental settings. SLAM is available for a wide 

variety of computers and operating systems. 

The SLAM simulation languate is written in FORTRAN. Many other 

simulation languages and dedicated simulation programs have been developed in 

FORTRAN because of its widespread use and availability. Another programming 

language popular with developers of simulation languages is Pascal. While few 

complete simulation languages have been developed in Pascal, much work has been 

done in adding discrete-event simulation extensions to Pascal. 

Frantz and Trott [24] describe the use of Pascal in the development of the 

Dynamic Ground Target Simulator. This system was developed to support the 

detailed discrete-event simulation of military activities. Pascal was used as a base 

language for the development of an extended language called the Model Definition 

Language (MDL). Features added to standard Pascal to support functions necessary 

for the simulation application included: 

• Event-scheduling 

• Message definition and output 

• Scenario time 

• Direct access files 

• Intermodule references 

Several features were excluded from the new Pascal implementation to 

preserve data protection and abstraction concepts. Other features were added to 

improve the readability of the resulting simulation code. 



www.manaraa.com

13 

Smith and Smith [70] also added extensions to the Pascal language to allow 

management and implementation of simulations. Among the new features added to 

the standard language were: 

• Process handling and synchronization 

• List handling 

• Distribution functions 

• Simulation control 

• Histogram functions 

Hughes and Gunadi [30] added extensions to ISO standard Pascal through 

the development of a preprocessor that generates ISO standard Pascal as output. 

The additions to Pascal incorporate a mechanism for quasi-parallel scheduled 

processes with multiple instances. The new features of the language are for 

purposes of discrete-event simulations. 

Barnett [3,4] describes two implementations of MICRO-PASSIM, a 

simulation package which provides the source code to Pascal procedures designed to 

allow discrete-event and continuous modeling. Among the features for simulation 

added to Pascal through MICRO-PASSIM are: 

• Real time clock 

• Queueing disciplines 

• Event sequencing 

• Random number generation 

• Integration of continuous state variables 

Seila [68] presents a similar approach to adding simulation capabilities to 

Pascal. SIMTOOLS is a collection of procedures and-functions that allow 
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discrete-event simulation programs to be easily developed in Pascal. The package, 

which implements the event world view, has procedures for creating and deleting 

entities, managing lists or queues, event scheduling and sequencing, system tracing, 

and data collection. SIMTOOLS only provides the core for simulation in Pascal. 

The intent is that the user augment the routines for specialized simulation situations. 

The following criteria were used during the development of the package: 

• Data structures and other declarations should be as simple as possible. 

• Procedures and functions should be simple and descriptive and have a 
minimum number of parameters, generally no more than three. 

• The internal mechanics of list insertion and removal, tracing/debugging 
output generation, and other operations should be as transparent as pos
sible to the user, while being accessible. 

• Source code should be self-documenting as much as possible. 

• Standard Pascal should be used where possible. 

A final reference to Pascal simulation environments is given by Thesen [77] 

where general information on writing simulations in Pascal is provided. An 

emphasis is placed on the development of efficient algorithms and data structures 

specific to simulation. Special attention is given to event set management and 

algorithms for the generation of random variates from the uniform, exponential, 

normal, and gamma distributions. 

The previous discussion is not intended to be a complete description of 

traditional approaches to simulation. Other languages exist, and differ in many 

aspects from those mentioned. Much attention has been focused on the 

improvement of the user interface for simulation languages. Research and progress 

in the area of user interfaces are discussed in the next section. 
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2. Improvements in the user interface 

Nance [53] indicates that simulation model representation is currently 

undergoing a significant transformation. The methods used for the development of 

simulation models had remained relatively unchanged for some 20 years. While 

revisions, extensions, and other conveniences have been added to the simulation 

languages discussed previously, no conceptual advances were obvious. 

The increasing demand for simulation software spurred a concentration on 

improvements in the way the user interacts with the system. Generally, the 

improvement made in simulation software user interfaces can be grouped in four 

categories: 

• Program generators and development environments 

• Graphic input 

• Graphic output and animation 

• Visual interactive simulation 

Kootsey and Holt [40] developed a simple user interface for the development 

of continuous simulation models. The user interacts with the program through a 

menu and is therefore insulated from the complexities of the underlying simulation 

model. 

Favreau and Marr [21] describes the EzSIM simulation system which is 

designed to aid in the development of continuous simulations. The EzSIM system is 

primarily a database management system that contains pre-written sets of simulation 

commands used for continuous simulation. The user is interviewed by the system to 

determine the necessary components of the simulation. The required code is then 

generated and the simulation is performed. 
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Another use of the database approach is offered by Marr [49] through 

SIM_BY_INT. The concept of SIM_BY_INT is to interview the simulation modeler 

to determine the type of simulation to be performed. SIMJBY_INT would then 

develop a database of required information and choose from among several 

available simulation languages to select the most appropriate language to use. The 

result of this approach is that the user is not required to know how to write the 

actual simulation. 

The interview technique is again used by Haigh and Bornhorst [27] for the 

NCR Corporation. The desire to simulate computer systems at NCR combined with 

a goal to reduce the costs of these simulations resulted in the development of several 

simulation environments. Each of these simulation systems uses an interactive 

interrogation of the user to develop a portion of the code required to eventually 

execute a GPSS simulation. Simulation model and report generating facilities have 

been developed as simulation aids. 

Mathewson [50] reviews the concept of application program generator 

software. Application program generators serve to simplify the process of 

generating computer code by presenting the user with easily understood prompts 

and menus. Based on user responses, the program generator automatically 

generates the required computer code to execute the target program. When applied 

to simulation, a program generator would generate code to be used by a simulation 

package such as GPSS or SLAM. Shanehchi [69] presents the EXPRESS system 

which is an application program generator specifically designed for simulation. 

EXPRESS generates simulation code for execution by the SEE WHY simulation 

language. 
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Cobbin [12] describes SIMPLE_1 which uses the network approach to model 

building. The user can create and execute models totally within the SIMPLE l 

environment. This ^stem is intended to be a complete simulation environment 

which supports the simulation modeling tasks of: 

• Data collection 

• Data analysis 

• Model development 

• Compilation and execution of simulations 

• Analysis of simulation results 

Another integrated simulation environment, TUTSIM, is described by 

Meerman [52]. TUTSIM is a simulation tool for the simulation of continuous 

dynamic systems. The model input is in dialog form, results are presented 

graphically, and calculations can be interrupted at any time. 

The GPSS simulation language described earlier has been implemented on 

microcomputers. Karian and Dudewicz [36] and Cox and Cox [18] describe 

GPSS/PC as an interactive implementation of GPSS which operates on IBM PC 

compatible microcomputers. In GPSS/PC, the older multiphasic designs have been 

replaced by a single, integrated simulation environment that combines the functions 

of editing, compiling, simulating, and debugging. 

Karian and Dudewicz [36] also present the PC SIMSCRIPT simulation 

system. Through the use of SIMLAB, a specially designed simulation laboratory 

environment, the user is able to interact with the simulation language processor. A 

prior description of SIMSCRIPT is given by Johnson, Rector, and Mullarney [33]. 
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The acceptance of program generators and integrated simulation 

environments for simulation languages emphasizes the continuing need for 

improved user interfaces. Graphics provide another method of interaction with the 

user. 

The use of graphic symbols for the design phase of the simulation model is 

implemented by Hoover [29] with MICRO-SIM, a network-based simulation system. 

Source and sink nodes are placed in the simulation network using graphic 

representations on the computer screen. Other types of nodes implemented in the 

system are intermediate, probabilistic, shortest queue, sequential attempt, and 

rotating discharge nodes. 

Wadsworth [82] examines the use of graphics for both input and output in a 

simulation environment. MICRO-PASSIM with graphics includes both input and 

output graphics. Hollocks [28] further examines the relative benefits of graphics in 

simulation. Hollocks states that real representation of the simulation problem is 

maintained by the underlying simulation system. The use of graphics can 

substantially enhance the interface with the user. With graphics, the user can see the 

model and relate to the simulation. The simulation may be better understood if 

visualized. Graphics also allows a higher level of user interaction with the 

simulation. 

Smith and Piatt [71] reinforce the advantages of graphics in simulation, 

specifically in the use of animation to display the simulation in progress. Animation 

provides better understanding of the simulation for the model builder, the model 

user, and to those who wish to examine the results of the simulation. 

Barta [5] describes three projects involving animated graphic output of 

simulation results. The intent of the projects was to determine future equipment 
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needs related to simulation. Grant and Weiner [26] present a discussion of factors 

to consider when selecting simulation systems when animation is desired. 

Birtwistle, Wyvill, Levinson, and Neal [9] examined a specialized application 

of computer animation in simulation of distributed simulation systems. 

Magnenat-Thalmarm and Thalmann [47] also used animation in the development of 

a unique computer animation language. Langlois [41] developed another computer 

animation language called SIMSEA which can be used to visualize a simulation. 

Johnson and Poorte [34] and Magnenat-Thalmann and Thalmann [46] 

propose some standards to follow in the development and implementation of 

animation in simulation software. 

The use of graphics for simulation model input and animated output was first 

examined in detail by Hurrion [31]. Hurrion coined the term "Visual Interactive 

Simulation (VIS)" to describe the concept of a simulation system that would utilize 

graphics for both input and output. Macintosh, Hawkins, and Shepherd [44] further 

describe the development of a VIS philosophy at Ford of Europe. Bell and O'Keefe 

[6] review the use of VIS in the United Kingdom and North America. 

While not called Visual Interactive Simulation systems. The Extended 

Simulation System (TESS) and GPSS/PC can be appropriately described as VIS 

implementations. Standridge [73] and Cox [17] describe each of these simulation 

languages. TESS provides an integrated environment for performing simulation 

projects in SLAM and includes the capabilities to graphically build SLAM networks, 

enter and manage simulation data, prepare reports and graphs, analyze simulation 

results, and animate simulation runs. The latest version of GPSS/PC utilizes 

interactive graphics and animation in its simulation environment. 
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Clearly, the user interface component of simulation languages has undergone 

a great deal of change since the early simulation languages first became available. 

Many other advances in simulation technology have occurred during the same 

period that are not as obvious. An important area of current research involves the 

development and implementation of object-oriented simulation languages. The 

concept of object-oriented programming is discussed in the next section. 

C. The Object-Oriented Programming Paradigm 

1. Historical perspectives 

The simulation languages reviewed previously are built on procedural 

languages such as FORTRAN or Pascal. The discussion now turns to a concept 

called "object-oriented programming." 

According to MacLennan [45], Alan Kay is considered to be the principal 

person responsible for the development of an object-oriented programming 

language called "Smalltalk." In the late 1960s, Kay realized that advances in 

computer design technology would eventually reduce the size and price of 

computers to the point that it would be possible for everyone to own a personal 

computer of considerable power. However, existing computer languages were 

designed for the mainframe computer experts. Kay thought that the absence of an 

adequate programming vehicle for these small computers may be an impediment to 

the success of personal computers. 

Kay investigated simulation and graphics-oriented languages as a new 

programming medium. He then proposed the concept of a small computer called 

"Dynabook" to Xerox Corporation. In 1971 the Xerox Palo Alto Research Center 

began a research project to develop the Dynabook. Smalltalk-72, the language for 
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the Dynabook, was designed and implemented by 1972. The Smalltalk language has 

been revised several times and is still undergoing change. 

Smalltalk remains as one of the most popular implementations of the 

object-oriented programming philosophy. The Smalltalk programming language is 

entirely object-oriented. Actor, described by Duff [20], is another example of a 

programming language that is exclusively object-oriented. Stein [74] presents the 

OPAL object-oriented programming language. 

Other languages have been extended to include object-oriented tools. 

According to Cornish [14], the C+ + preprocessor, the Flavors system for LISP 

machines, and the Conunon LISP Object System are examples of languages that not 

only provide standard programming features, but also include object-oriented 

programming features. Fountain [56] describes object-oriented extensions that have 

been added to the FORTH programming language. 

Many implementations of object-oriented programming languages are 

available to build object-oriented applications. The next section provides a 

discussion of the nature of object-oriented programming. Because the term 

"object-oriented programming" was first used to describe the Smalltalk language, the 

following discussion will present the concepts of object-oriented programming from 

the Smalltalk perspective. 

2. Elements of object-oriented programming 

Cornish [14] states that object-oriented programming is not another 

programming language. It is a set of programming techniques that can be used in 

many programming languages. The term "object-oriented programming" has been 

incorrectly used to describe many of the graphic user interfaces found in modern 

microcomputer applications such as GEM and Microsoft Windows. While it is true 
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that many of the implementations of object-oriented programming are based on a 

graphic environment, graphics are not part of the object-oriented philosophy. 

Most computer languages operate under the "data-procedure" paradigm. 

Procedures (distinct sections of computer code) act on data passed to them. 

Procedures must be prepared for every type of task required by the resultant 

program. An example would be comparison function, compare(Xl,X2), that takes 

two parameters and returns a value indicating whether the first parameter is less 

than, equal to, or greater than the second parameter. In a strongly-typed language 

such as Pascal, separate compare functions would be prepared for each data type 

that requires comparison. 

Object-oriented languages employ a data or "object-oriented" approach to 

programming. Instead of passing data to procedures, the data (objects) are asked to 

perform operations on themselves through the use of "messages." Using the 

comparison function example, an object-oriented program statement might appear 

as follows: 

XI : compare X2. 

In this example, the object XI is asked to perform the compare function on 

itself. In this case, XI is said to be the "receiver" of the message "compare" and X2 is 

supplied as an argument object. 

Figure 2-3 illustrates the basic terminology used in object-oriented 

programming for the compare function example. XI and X2 are "instances" of a 

"class." The class provides all the information necessary to construct and use objects 

of a particular kind, its instances. Each instance belongs to one class, but a class may 

have multiple instances. 
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X2 

CLASS OBJECT 

Method 1.... (compare) 
Method 2.... 
Method 3... 

Instances of 
Class Object 

Figure 2-3. Class structure of object-oriented programming 

The class also provides storage for "methods." Methods are simply 

procedures designed to operate on instances of a class. In the example, compare 

would be a class method. Methods are invoked by sending "messages" to an instance 

of a class. Each instance of a class has storage allocated to it to maintain its 

individual state. The state of an object is referenced by its "instance variables." 

Computation in an object-oriented system is achieved by sending a message 

to an object which invokes a method in the object's class. In the example, the 

message "compare" is sent to the object "XI", which invokes the compare method in 

the class object. Typically, a method will send messages to other objects. Each 

message-send eventually returns a result to the sender. The state of some of the 

objects in a message-send chain may change as a result of the activity. Much of the 

message sending that occurs in an object-oriented system is automatic and 

transparent to the user. 
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According to Pascoe [55], a programming language must have four elements 

to support the object-oriented programming philosophy: 

• Information hiding 

• Data abstraction 

• Dynamic binding 

• Inheritance 

Tesler [76] describes each of these terms in detail. Information hiding refers 

to the breaking up of programs into modules that can be modified independently. In 

an object-oriented system, every module is an object, that is, a data structure that 

contains the procedures that operate on it. In designing an object-oriented program, 

objects are identified which constitute a useful portion of the problem at hand. The 

objects contain their own data, and hide that data from other objects. 

Data abstraction is the process of hiding data structures within objects. This 

practice avoids the strong type-checking requirements of many programming 

languages. Data structures may be dynamically modified without requiring changes 

to the underlying computer code. Procedures within the object act on the data 

independent of the type. These procedures are called "methods" in the 

object-oriented programming paradigm. Dynamic binding occurs when the 

object-oriented program is executed. Only messages are sent to objects and the data 

types and methods are determined by the object. This is known as "polymorphism." 

Object-oriented languages share code through "inheritance." A new object 

may be created as a variation or exact copy of an existing object. The new object is 

called a subclass of the old class, and the old object is a superclass of the new object. 

Objects in the subclass inherit all the properties of the superclass, including the 
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implementations of methods. The subclass can define additional methods and 

redefine old methods. 

3. Advantages of object-oriented programming 

Object-oriented programming offers many advantages over procedural 

languages. Information hiding and data abstraction increase reliability and help 

separate the specification of procedures and data types firom implementation. 

Dynamic binding increases the flexibility of the program by permitting the addition 

of new classes of objects (data types) without having to modify existing code. The 

addition of inheritance to dynamic binding permits code to be reused with minimal 

effort. In general, this will reduce the size of the program code and increase 

programmer productivity. Object-oriented programs are typically easier to maintain 

because of the direct relationship between data and procedures. 

Another important advantage of object-oriented languages is the 

correspondence between objects in the language and real-world entities. The 

programmer may find fewer obstacles in the design phase of a programming project 

when the program design closely approximates its real-world counterpart. 

4. Disadvantages of object-oriented programming 

Object-oriented languages have some characteristics that are considered to 

be disadvantages by some. The dynamic binding mechanism of late-binding 

object-oriented languages usually requires a high level of computer processor 

overhead. A message-send takes more time than a standard function call. The 

comparison between message sends and function calls is difficult to measure. While 

the message-send is slower, it usually accomplishes more than a function call. 

Another disadvantage is that the implementation of the object-oriented 

language is often more complex than a comparable procedural language. The 
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programmer must often learn an extensive class library before becoming proficient 

in an object-oriented language. 

In the final analysis, the choice of programming enviroimients is related to a 

multitude of factors, only some of which were considered here. One area that 

appears to be well suited for the application of object-oriented languages is 

simulation. The use of object-oriented languages in computer simulation is 

discussed in the next section. 

D. Object-Oriented Simulation 

1. Knowledge-based simulation and the DEVS formalism 

In recent years an important concept in simulation research known as 

"knowledge-based simulation" has been developed and discussed by Zeigler [83,84, 

85], Zeigler and Tag Gon [86], Rozenblit and Zeigler [61], Rozenblit, Suleyman, and 

Zeigler [62], Ruiz-Mier, Talavage, and Ben-Arieh [63], and Concepcion [13]. These 

researchers noted that many concepts related to simulation were also present in the 

design and implementation of artificial intelligence ^stems. This similarity 

provoked a realization that the two sciences of artificial intelligence and simulation 

may someday merge. In preparation for the possible merger, the researchers 

decided that the concepts related to both sciences should be studied in an effort to 

define a cohesive approach to knowledge-based model preparation and design. In 

particular, Zeigler advanced the concept of the Discrete Event Simulation 

Specification (DEVS formalism) as a standard approach to knowledge-based 

simulation system design and implementation. 

Figure 2-4 illustrates the fundamental concepts of modularity and model 

bases. Suppose that model A and model B are in the model base. If the models are 
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Figure 2-4. Modularity and model bases 

in proper modular format, it would be possible to create a new model by specifying 

the form of inputs and outputs of A and B that are to be connected to each other and 

to external ports, an operation called "coupling." The resulting model, called AB, 

would again be in modular form. The coupling process could then continue to build 

an unlimited variety of models. The model components would be modular and 

hierarchical. 

An important benefit of the modular, hierarchical approach is that a model in 

the model base can be independently tested by coupling a test module to it. The 

result is a reliable and efficient verification of large simulation models. 

An important concept in the DEVS formalism is the "coupling specification." 

There are three parts in the coupling specification: 
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• External input coupling - describes how the input ports of the composite 
model are identified with the input ports of the components. 

• External output coupling - tells how the output ports of the composite 
model are connected to the output ports of the components. 

• Internal coupling - specifies how the components inside the model are in
terconnected. 

In general, the coupling relationships of the model components are 

illustrated with a composition tree. By following the limbs of a composition tree, a 

submodel composition may be obtained. This submodel decomposition supports the 

modular, hierarchical concept. 

The specification of a modular discrete-event simulation model requires a 

different view than that taken by traditional simulation languages. As described 

previously, a model must be viewed as possessing input and output ports through 

which all interaction with the environment flows. In the case of a discrete-event 

model, events determine values present on the input and output ports of the model 

components. 

A pseudo-code has been developed to assist in the specification of 

discrete-event models. This code uses the form "when receive x on input port p, 

send y to output port p." This is known as a transition statement and is similar to the 

form of predicate logic used in many expert system languages. In addition, the 

modular concepts of the DEVS formalism relate closely to the data abstraction and 

modularity concepts present in object-oriented languages. Additional control 

statements added to the DEVS pseudo-code permit complete specification of the 

desired model. 
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Figure 2-5. Class inheritance in DEVS-Scheme 

Zeigler [84] describes the implementation of the DEVS formalism for 

discrete-event modeling in PC-Scheme, an object-oriented LISP dialect for 

microcomputers. In contrast to existing knowledge-based simulation systems, 

DEVS-Scheme is based on the DEVS formalism discussed previously. 

DEVS-Scheme is a shell that operates in conjunction with PC-Scheme in such a way 

that all the underlying object-oriented and LISP features are available to the user. 

DEVS-Scheme is primarily coded in SCOOPS, the object-oriented superset 

of PC-Scheme. Figure 2-5 illustrates the class inheritance structure of 

DEVS-Scheme. The entity object provides all the tools for manipulation of objects. 

The model and processor classes provide the basic constructs required for modeling 

and simulation. 
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The atomic-model class implements DEVS formalism for discrete-event 

models. Spec-model class objects contain the specific entity definitions and port 

specifications of the hierarchical model. Coupled-models is the major class which 

embodies the composition constructs of the DEVS formalism. Digraph-models and 

broadcast models are specializations of the coupled-model class which enable 

specification of coupled-models in special ways with linked and finite set 

components. 

The simulators and co-ordinators are special classes of processors which carry 

out the simulation of DEVS models by implementing the abstract simulator 

principles developed as part of the theory. Simulators and co-ordinators are 

assigned to handle atomic-models and coupled-models in a one-to-one manner, 

respectively. 

Simulation in a DEVS model proceeds by means of messages passed among 

the processors which carry information concerning internal and external events, as 

well as data required for synchronization. DEVS-Scheme runs interactively; a 

simulation run can be interrupted during the root-coordinator's cycle so that a pause 

occurs only at a valid model state. The simulation can be restarted from the resulting 

state after desired modifications have been made to the model. 

Aside from a minimal standardization of the interfaces, DEVS-Scheme does 

not impose any particular choice of typing of the input, state, and output objects. 

Because DEVS-Scheme is based on LISP, objects are represented as lists 

constmcted and decomposed using cons, car, and cdr functions. For these functions, 

there are no types, therefore no type specification is required of DEVS-Scheme. 

This facet offers generality, but allows no strong type-checking, which becomes the 

responsibility of the programmer. Thus, large memory requirements, the slow 
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execution of languages such as LISP, and the requirement of user-facilitated 

type-checking negate many of the benefits of the DEVS-Scheme language for 

discrete-event modeling and simulation. 

While many researchers approached simulation from the 

knowledge-representation viewpoint, others made attempts to advance traditional 

views of simulation. A promising area of research related to object-oriented 

simulation is the topic of process-oriented simulation discussed in the next section. 

2. Process-oriented simulation 

An often misused and misunderstood term in computer simulation is 

"process-oriented." This term was used previously to define a "world-view" taken by 

some simulation languages. While correct, that usage does not represent the 

complete definition of process-orientation. A more general description of 

process-oriented simulation languages and their implementation is reviewed in this 

section. 

Golden [25] elaborates the software engineering principles required in a 

process-oriented simulation language. Many of the concepts presented are utilized 

in the current research involving process-orientation. In a process-oriented 

simulation language, modeled systems are viewed as a collection of interacting 

processes. Some of the processes are separated into subprocesses to facilitate 

simplicity, modularity, and ease of programming. Saydam defines the properties of a 

process as: 

• It behaves as a separate, independently controlled program. 

• It has a well-defined behavior algorithm. 

• It is capable of generating objects (entities) and processing them or pass
ing them into other processes. 
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• It can be activated, put on hold, or terminated at desired points in time or 
based on certain conditions. 

• Once activated, a process repeats its behavior until it is put on hold or ter
minated. 

• Many copies (instances) of the same process can be obtained and may be 
initiated to work in parallel. 

The reader may note that the previous definition of process-orientation does 

not directly match that of the process world view defined earlier, but a closer 

inspection reveals some similarity. The process world view does indeed represent a 

simulation model as a group of activities (processes) and operates on them as a 

related group. Traditional simulation languages attempted to implement the 

process world view by using activity scanning in an effort to achieve parallelism in 

operation of the simulation model. 

Original simulation languages as described by Banks and Carson [2] could 

not generate new processes and could not, in reality, achieve the parallelism sought 

in process-oriented simulation, but the use of high-speed computers could 

approximate that behavior. Recent research offers other approaches to 

process-oriented simulation, but the underlying concepts remain unaltered. The 

primary change of direction has been in the development and extension of different 

computer languages to advance the process-oriented approach. 

Decker and Maierhofer [19] describe a simulation language called BORIS 

which represents an attempt at process-orientation with a strongly-typed procedural 

language (Pascal). The building-block approach used in BORIS, along with the 

separately compiled modules available in Pascal does provide some of the constructs 

of a process-oriented simulation language. However, the approach used with 
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BORIS forces the use of strong types in the definition of objects (processes) and 

cannot dynamically create these objects. Parallelism is not achieved in BORIS and 

the concept of separate operational modules is not well supported. 

Hughes and Gunadi [30] used Pascal as a base language to implement parts 

of process-oriented simulation. Extensions were added to standard Pascal for 

discrete-event simulation with mechanisms for quasi-parallel execution of scheduled 

processes with multiple instances. The major drawback of this implementation is 

the strict use of a preprocessor to generate native code for the following compilation 

step. The objects and their multiple instances are created at compile time and 

cannot be interrupted or modified during the execution of the simulation. 

In addition, the programmer must rely on strong types to define the processes 

and must generate the appropriate event scheduling code prior to compilation. In 

general, the preprocessor, not the resultant simulation program, handles the 

process-oriented aspect of the simulation. Malloy and Soffa [48] use Pascal as the 

base language for SIMCAL, a merger of Simula and Pascal. SIMCAL uses the 

preprocessor approach and does little to add to the flexibility and ease of 

programming desired of process-oriented simulation languages. 

Another attempt at process-oriented simulation in Pascal is offered by 

Vaucher [81] with the PSIM simulation language. Procedures were developed to 

facilitate object creation, scheduling, and inieraction. Again however, the 

programmer is primarily responsible for the proper creation and scheduling of 

processes, the resulting simulation model cannot be altered during execution (after 

compilation), and many of the key concepts of a process-oriented language are not 

implemented. 
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A similar approach is taken by L'Ecuyer and Giroux [42] using Modula-2, a 

language similar to Pascal. The SIMOD language utilizes a structured set of 

precompiled modules for scheduling and process interaction. Modula-2 

implementation of process-orientation does little to alleviate programmer 

involvement in the preparation of a simulation model and only partially supports a 

complete set of process-oriented simulation facilities. 

The C language has been used by Schwetman [67] to implement a partially 

process-oriented simulation package. In addition to supporting process-oriented 

simulation, CSIM supports features dealing with modeling system resources, 

message passing, data collection, and debugging. Like many previous attempts, 

CSIM offers many process-oriented features but requires much of the programmer. 

Current research in process-oriented simulation is turning toward symbolic 

programming languages as an alternative to traditional languages. Stairmand and 

Kreutzer [72] describe the use of LISP to develop a process-oriented simulation 

system called POSE. The use of LISP as a base language offers the desired 

interactive flexibility and list processing capabilities. 

While previous research has included parts of the object-oriented paradigm, 

the concentration is now on the full implementation of the object-oriented approach 

to simulation as reviewed in the next section. 

3. Implementations of object-oriented simulation 

The use of the object-oriented paradigm in simulation is documented by 

McFall and Klahr [51] in their discussion of Rand Corporation's ROSS language. 

ROSS is an object-oriented simulation language used primarily in the area of 

military war-game simulation. This language was one of the first to provide 
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inheritance from multiple classes of objects, a feature that is well proven in other 

areas of knowledge-based programming. 

Smalltalk is an object-oriented programming language based on Simula, an 

extension of Algol intended for simulation. Smalltalk objects are well suited to 

modeling real-world objects. Specifically, the data values inside an object can 

represent the properties and relations in which that object participates, and the 

behavior of the Smalltalk object can model the behavior of the real-world object. 

Therefore, in Smalltalk, the dominant paradigm of programming is modeling or 

simulation. Because of its close relationship with simulation, Smalltalk has been 

used in many simulation applications. 

Knapp [38,39] describes one of many possible Smalltalk simulation 

environments. Everything is Smalltalk is an object which is an instance of a class. 

Each class contains class variables, templates for instance variables and the instances 

themselves, and methods (procedures) for processing messages sent to objects of 

that class. In Smalltalk execution proceeds through objects sending messages to 

other objects and waiting until the other objects reply. The application of these 

concepts to simulation is apparent. 

Users of Smalltalk have extended the original language to provide classes for 

discrete-event simulation. The user may utilize these classes directly or extend them 

through the subclass mechanism to control the simulation. The simulation classes 

include Simulation, SimulationObject, DelayedEvent, WaitingSimulationObject, 

Resource, ResourceProvider, and ResourceCoordinator. There are also classes to 

provide the necessary probability distributions. 
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Ulgen and Thomasma [78] further describe the Smalltalk simulation 

environment and compare simulation in Smalltalk versus traditional languages. 

Eight features are compared: 

• Modeling orientation 

o Input flexibility 

• Structural modularity 

• Modeling conciseness 

• Macro capability and hierarchical modeling 

• Standard statistics generation and data analysis 

• Animation 

• Interactive model debugging 

The Smalltalk simulation environment supports an object-oriented approach 

where for each object a set of tasks are defined. Objects perform their tasks 

independently and pass messages to each other to coordinate their work. This 

concept fits the real-world view of systems in which message passing occurs. 

Traditional simulation languages generally cannot support this messages passing 

capability. The burden of selecting the model orientation is placed on the user. 

Input flexibility is provided in Smalltalk simulations through the use of windows and 

pop-up screens for data input. Most traditional simulation languages also support 

some type of input aids. 

Structural modularity refers to the modular organization of the simulation 

software. The Smalltalk environment naturally supports modularity while other 

simulation languages must be specially structured to support this feature. Concise 

simulation models are typically easier to build and debug. Many of the traditional 
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simulation languages, as well as Smalltalk, support conciseness through the use of 

block components and simulation network construction. 

Traditional simulation languages do not typically support the hierarchical 

modeling concepts described previously. The hierarchical nature of object-oriented 

languages such as Smalltalk naturally implement the hierarchical approach to 

simulation modeling. In addition, macros of system components can easily be 

constructed and stored as object in an object-oriented system and are also available 

in many traditional languages. 

An object-oriented simulation language provides no special advantage in the 

generation and analysis of statistics, although the graphics basis of most object 

oriented languages such as Smalltalk may provide a richer set of output types. 

Animation may also be easier to implement in a language that is already based on 

graphics, but animation is readily available in many traditional simulation languages. 

Cammarata, Gates, and Rothenberg [10] state that animation may even be more 

difficult in an object-oriented language. The interruptible facet of Smalltalk adds 

flexibility to model debugging, which is often difficult in traditional simulation 

languages. 

Concurrency in simulation models can be readily obtained through the use of 

an object-oriented paradigm. Bezevin [7] discusses concurrency in Smalltalk. A 

simulation platform called SimTalk was built within the Smalltalk environment. 

Several aspects of producing simulation software were investigated including 

graphical programming, interactive programming, automatic tracing and statistics 

gathering mechanisms, and advanced programming techniques useful for simulation. 

King and Fisher [37] describe the development of extensions to the Smalltalk 

language for use in shop-floor design, simulation, and evaluation. 
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The concept of object-oriented simulation is not restricted to a typical 

object-oriented programming language such as Smalltalk. Unger [79] discusses the 

use of C, Ada, and Simula for object-oriented simulation with results that tend 

toward complexity. Samuels and Spiegel [64] report better success with Ada, but 

inspection of the research reveals that the end result does not incorporate many of 

the features required of the object-oriented paradigm and is more directed at the 

interactive debugging aspect of the simulation. 

The research related to object-oriented simulation has primarily focused on 

the use of object-oriented languages such as Smalltalk. Other languages such as 

Pascal, Ada, and C have also received some attention. A compromise has emerged 

between the speed and structure of traditional languages versus the inheritance and 

class structure mechanisms of object-oriented languages. Parallel processes and 

interactive debugging facilities are desirable components of an object-oriented 

simulation system, yet slow execution speed and large memory requirements inhibit 

the large-scale use of object-oriented simulation. Clearly, much work is needed in 

this area. The next section presents a discussion of the future directions in 

object-oriented simulation. 

4. Future directions in object-oriented simulation 

Birtwistle [8], Jefferson [32], and Vaucher [80] each discuss their views of the 

future of simulation software. Rothenberg [60] specifically addresses the need for 

further research in object-oriented simulation software regarding modeling power, 

control representation, comprehensibility, and reusability of model building. 

Current discrete-event simulation systems are limited in the types of 

questions they can answer. The simulationist typically specifies the model inputs 

and then runs the simulation. This corresponds to a "what if question. Typical users 
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would also like to ask "why," "how," and optimization questions. The limitation of 

current simulation languages to answer such questions results primarily from their 

underlying representation of knowledge and their lack of inferential capabilities. 

One possible approach to add inference capabilities to simulation software is to use 

the "inference engine" approach applied to many expert system packages. 

The control of the simulation model becomes more important as the power 

of the software increases. One of the major shortcomings of most simulation 

systems is their inability to represent models with varying degrees of aggregation. 

The modeler must predetermine the level of aggregation of the model, and program 

the simulation system accordingly. It is currently difficult, if not impossible, to vary 

the level of aggregation after the simulation has been started. Dynamic aggregation 

would allow a simulation to be run at one aggregate level to a certain point and then 

continued at a different aggregate level. 

A related limitation is the display of the aggregate levels in usable form. 

Many object-oriented systems are graphics-based. Graphics-based systems are 

programs that rely on graphic symbols on the computer screen for user interaction. 

Smalltalk, Microsoft Windows, and the Apple Macintosh operating system are 

examples of graphics-based systems. Graphics-based systems allow greater 

flexibility in the presentation of objects to the user and can help the user visualize 

the inner workings of a simulation, but with these systems the user cannot control 

the level of visual interaction that occurs. The combination of dynamic aggregation 

and visual detail changes would be desirable. In such a system, the user could 

"zoom" to different detail levels of the simulation with the desired level of detail 

always available. In addition, the user should have full control of starting and 



www.manaraa.com

40 

stopping the model at any point, whether to merely examine the current state of the 

system or to change the simulation parameters. 

The object-oriented paradigm focuses on the definitions of objects with a 

built-in inheritance mechanism in the class and subclass concept. This organization 

is limited to the pure hierarchical model relation while real-world models are often 

based on many other types of relations. The object-oriented paradigm should be 

extended to cover other ̂ es of relations. 

Object-oriented simulation systems, as well as the traditional simulation 

languages, often must introduce components to the simulation model that are 

created for the direct support of the simulation system but do not relate to a 

real-world object. It is desirable to reduce the quantity of artificial objects required 

in simulation systems in an effort to reduce complexity and distraction. 

A further problem in current object-oriented simulation systems involves the 

scope of the simulation. Although objects are theoretically intended to encapsulate 

data and operations, most current environments make object names, message forms, 

and even attribute names globally available. Larger and more complex simulations 

will require that strict data hiding and abstraction principles are followed. 

A final goal in object-oriented simulation research is to develop a workable 

object definition paradigm that would be usable for all types of objects. Such a 

representation could be implemented in database form and accessed by the model 

builder to create complex models from a standard, albeit large database of objects. 

5. Summary 

The preceding review of literature represents a diverse array of information 

related to simulation. A brief history of computer simulation was presented, 

followed by a review of traditional simulation languages and improvements that 
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have been made in the user interfaces of these languages. The concept of 

object-oriented programming preceded a discussion of object-oriented simulation 

and related topics. 

This research furthers the development of the object-oriented paradigm in 

simulation. The next chapter presents a detailed discussion of the object-oriented 

simulation software developed in this research. 
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m. SIMULATION SOFTWARE DESIGN 

A. Introduction 

This chapter provides a discussion of the design of the object-oriented 

simulation software. As stated previously, the primary goal of this research is to 

develop object-oriented extensions for simulation in a strongly-typed procedural 

language. There are several distinct goals to be achieved during the course of the 

research. 

A programming language must be selected to serve as the basis for the 

research. Next, the fundamental programming algorithms and procedures must be 

developed. Class and instance creation and manipulation must be incorporated into 

the software. The object-oriented extensions for simulation must then be added to 

the base program. The remainder of this chapter presents a discussion of each of 

these major research activities. 

B. Language Selection 

Many alternative languages are potential candidates fo this research. The 

major requirement is that the language used must be a strongly-typed procedural 

language. Traditional simulation languages are typically built in FORTRAN, while 

modem approaches often utilize languages such as Ada, C, and Pascal. 

The use of a strongly-typed language avoids the late binding of data types 

inherent in languages without strong typing. Binding is the process of allocating 

memory locations for program data. The size and structure of these memory 

locations depends on the data types. If the data types are known at compile time, 

early binding may be performed, thus reducing the execution time of the program. 
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The use of a procedural language allows increased program modularity which 

reduces code maintenance. Modularity also allows greater use of common code 

throughout the software. In addition, new operating ^stems are constructed with 

procedural languages. If the software created in this research is to eventually be 

ported to new operating systems, the use of a procedural language will reduce future 

portability problems. 

The object-oriented nature of this research indicates that a programming 

language that already contains some type of object-oriented extensions would be 

useful. Languages such as Objective C or C + + would meet this criterion. 

However, in an effort to construct the object-oriented portion of the simulation 

language from an unbiased viewpoint, the programming language used should be 

one without object-oriented extensions. 

Strong type checking exists in many of the modern programming languages 

such as C, Pascal, and Ada. The desired procedure orientation is also present in 

these languages. The remaining criteria for programming language selection are: 

• Fast compilation to minimize program development time. 

• Integrated environment to provide ease of use and maximum program
mer productivity. 

• Capability to utilize external assembly language subroutines to allow for 
the advanced programming requirements necessary in this research. 

• Interrupt support to enable the use of multitasking primitives for error 
handling. 

• Availability on MS-DOS microcomputers to fit the equipment available 
for this research. 

• Commonly used language to extend the comprehensibility of those who 
later examine or extend this research. 

• Separate module compilation to allow a unitized approach to the con
struction of the simulation language. 
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After consideration of the listed criteria, Borland International's Turbo 

Pascal version 5.0 was selected as the language to use for this research. Turbo Pascal 

provides an integrated environment with built-in debugging facilities. Compilation 

with Turbo Pascal is fast and the language supports external assembly language 

subroutines. Full interrupt support is available and the language operates on 

MS-DOS microcomputers. Separate module compilation allows data hiding 

necessary with the object-oriented paradigm. 

After selection of the programming language, the next step is to develop the 

overall structure of the simulation language with respect to the object-oriented 

paradigm. The next section provides an overview of the simulation program 

structure. 

C. Simulation Program Structure 

The software created in this research is capable of simulating systems with 

multiple servers and queues. Arrival and service time distributions may be selected 

from the uniform, exponential, and normal family of distributions. Resource usage 

is not supported in the simulation program. Figure 3-1 shows the general structure 

of the simulation software developed in this research. As indicated, the program 

will consist of three major sections. 

Program PrImMlve# 

Class Manipulation 

ObJect-«rl«nted 
Simulation Facilities 

Figure 3-1. Simulation program structure 
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Many low-level routines are required in the program that are not directly 

related to simulation. These low-level routines are referred to as "program 

primitives." The concept of "classes" in object-oriented programming is key to the 

proper development of the program. Qass manipulation forms the second major 

component of the software. The third major component of the simulation software 

developed in this research is devoted to object-oriented simulation facilities which 

handle the simulation proper. 

Each of the three major components of the software are discussed in detail in 

the following sections. The next section reviews the program primitives. 

D. Program Primitives 

The development of any computer program requires the preparation of many 

facilities of a general nature. The program for this research also requires numerous 

program primitives for the successful implementation of the complete program. The 

program primitives can be placed in several categories which include: 

• Keyboard handling 

• Screen input/output 

• Printer output 

• Error handling 

• Miscellaneous routines 

It has been said that 90% of most computer programs are dedicated to the 

handling of input and output. The program for this research also makes extensive 

use of input and output through the computer display and the keyboard. In an effort 

to achieve maximum program speed and efficiency, routines for input/output 

received much attention during program development. 
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function Getakey:byte; 
{ get a keystroke from the user } 
var 

Regs : registers; 
be^ 

repeat { wait for a keystroke } 
until KeyPressed; 
Regs^Ax:=$0000; { read the keyboard, something has been pressed } 
Intr($16,Regs); 
if Lo(Regs Ax)=$00 then 

Getakey: = 128+Hi(Regs.Ax) { add 128 if special key } 
else 

Getakey.=Lo(Regs Ax); 
end; 

function KeyBoard(OkSet:MenuSet; Cursor:byte):byte; 
{ gets a valid keystroke and optionally runs pop-ups } 
var 

Ch: byte; 
OldCursor: byte; 
Regs: registers; 

be^ 
OldCursor:=CurrentCursor; 
SetCursor(Cursor); 
repeat 

Ch: = Getakey; 
if not (Ch in OkSet) then Beep; { beep if invalid } 

until (Ch in OkSet); 
KeyBoard:=Ch; { valid key was selected - return keystroke } 
SetCursor(OldCursor); 

end; 

Figure 3-2. Keyboard handling routines 

1. Keyboard handling 

The user of the program will be required to enter data from the keyboard. 

Routines to handle keyboard input are an essential part of the program. The Pascal 

language provides basic keyboard input through the READ function. The READ 

function does not allow input of function keys and does not allow for strict error 

checking and confinement of user input to a restricted set of allowable characters. 

The GETAKEY and KEYBOARD functions shown in Figure 3-2 replace the 
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FWAttr EQU BYTE PTR [BP+6] 
FWCol EQU WORD PTR [BP+8] 
FWRow EQU WORD PTR BP+10] 
FWSt EQU DWORD ETO [BP+12] 

FastWrite PROC FAR 

PUSH BP 
MOV BP,SP 
PUSH DS 
MOV AX,FWRow 
MOV DI,FWCol 
CALL CalcOffset 
MOV CL,RetraceMode 
LDS SI,FWSt 
CLD 
XOR AX^AX 
LODSB 
XCHG AX,CX 
JCXZ FWExit 
MOV AH,FWAttr 
RCR AL,1 
JNC FWMono 
MOV DX,03DAh 

FWGetNext: 
LODSB 
MOV BX,AX 
CLI 

FWWaitNoH: 
IN AL,DX 
TEST AL,8 
JNZ FWStore 

FWWaitH: 

FWStore: 

RCR 
JC 

IN 
RCR 
JNC 

AL,1 
FWWaitNoH 

AL,DX 
AL,1 
FWWaitH 

FWMono: 

FWExit: 

MOV AX,BX 
STOSW 
STI 
LOOP FWGetNext 
JMP FWExit 

LODSB 
STOSW 
LOOP FWMono 

POP DS 
MOV SP,BP 
POP BP 
RET 10 

;Save BP 
;Set up stack frame 
;Save DS 
;AX = Row 
;DI = Colunm 
;Call routine to calculate offset 
;Grab this before changing DS 
;DS:SI points to St[0] 
;Set direction to forward 
;AX = 0 
;AX = Length(St); DS:SI - St[l] 
;CX = Length; AL = Wait 
;If string empty, exit 
;AH = Attribute 
;If RetraceMode is False... 
; use "FWMono" routine 
;Point DX to CGA status port 

;Load next character into AL 
;Store video word in BX 
;No interrupts now 

;Get status 
;VerticaI retrace in progress? 
;Ifso,go 
;Else, wait for end of 
; horizontal retrace 

;Get 6845 status again 
;Wait for horizontal 
; retrace 

;Move word back to AX... 
; and then to screen 
;Allow interrupts! 
;Get next character 
;Done 

;Load next character into AL 
;Move video word into place 
;Get next character 

;Restore DS 
;Restore SP 
;Restore BP 
;Remove parameters and return 

FastWrite ENDP 

Figure 3-3. Assembly language routine for screen output 
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procedure WriteFast(X, Y,SC:b^e; Srstring); 
{ use fastest possible write routine to write a string at X,Y in SC color } 
be^ 

FastWrite(S,Y,X,SC); 
end; 

procedure WriteAt(X,Y:byte; Szstring); 
{ write a string at X,Y with specified imbedded colors (default is norm) } 
var 

Attrs: array [0..6] of byte Absolute BackC; 
CAttr: byte; current attribute } 
Ps: byte; current position} 
Len: byte; length or string} 

be^ 
if Pos(#255,S)=0 then begin 

FastWnte(S,Y,X,NormC); 
Exit; 

end; 
CAttr:=NormC; { default to normal text} 
Ps:=0; 
Len: = 0rd(s[01); 
while Ps>0 do begin 

Inc(Ps); 
if S[Psj = #255 then begin { special color attribute } 

CAttr:=Attrs[Ord(S[Succ(Ps)])]; 
Inc(Ps,2); 

end; 
FastWrite(S[Ps],Y,X,CAttr); 
Inc(X); 

end; 
end; 

Figure 3-4. Pascal interfaces to screen routine 

READ function by reading keyboard input directly from the host machine's 

low-level keyboard buffer to provide the desired functionality, 

2. Screen output 

A large amount of information is manipulated during a simulation program. 

One of the major thrusts of this research is to develop software that is highly visual 

in an effort to demonstrate the object-oriented functions of the program. Pascal 

provides screen output with the WRITE procedure but this facility is inefficient and 

too slow for this research. The routines shown in Figure 3-3 and Figure 3-4 were 
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function WritePrt(S:string):boolean; 
{ print and check tor errors or user abort} 
const 

PWait = 20000; { 20 second wmt for timeout} 
var 

if Length(S)=0 then begin 
WritePrt:=True; 
Exit; 

end; 
PAbort:=ErrorCheck(False); 
while ((Length(S)O) and (not PAbort)) do be^n 

if Keypressed then begin 
Regsj^x:=$0000; { read the keyboard } 
Intr($16,Regs); 
if Lo(Regs^)=$00 then Chk: = 128+Hi(Regs_Ax) 
else Chk:=Lo(Regsj\x); 
if Chk=ESC then PAbort:=GetBool('Print cancel requested, Ok to stop?'); 

end; 
if not PAbort then begin 

Regs Dx:=$0000; f select printer 1} 
Regsj^x = Ord(S[l]); { output 1 character } 
Intr($17,Regs); 
Timeout:=0; 
wWle ((fHi(Regs.Ax) and 128)=0) and (TimeOutWait)) do begin 

Inc(Timeout); 
Delay(l); 
Regs.Dx: = $0000; { select printer 1} 
Regs^Ax: = $0200; { request printer status } 
Intr($17,Regs); 

if Timeout=PWait then PAbort: = (not PrinterReady); 
if not PAbort then Delete(S,l,l); 

end; 
end; 
while Keypressed do begin 

Regs j\x: = $0000; { clear the keyboard, just in case } 
Intr($16,Regs); 

end; 
WritePrt: = (not PAbort); 

end; 

Figure 3-5. Printer output function 

renters; 
irt: boolean; 

Chk: byte; 
TimeOut: word; 

begïn 

end; 
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developed to bypass the host computer's input/output system and write screen 

output directly to video memory. Screen output handled in this way results in the 

optimum display speed necessary for this research. 

3. Printer output 

Certain operations of the program require printed reports to collect and 

analyze simulation information. The standard Pascal language provides access to a 

printer with the WRITELN procedure. WRITELN presents a problem if error 

conditions occur during printer output. If, for example, the printer runs out of paper 

while printing, the error message returned by the printer will cause the display to 

scroll. No direct recovery of the correct screen display would be possible. It is also 

desirable to allow the user to interrupt printing at any time. The function shown in 

Figure 3-5 provides a solution to the problems stated above. 

4. Error handling 

Any computer program should adequately protect the user and the data from 

errors that may occur, either through system malfunction or incorrect entry of data. 

The software developed in this research addresses both types of errors. 

frocedure Int240n; 
enable new Int24 error handler } 

begin 
GetIntVec($24,01dInt24); save old Int24 vector } 
SetIntVec(S24,@Int24); install new critical error handler } 
CritError:=0; and set global errors to zero } 
PasError:=0; 
AMSTError:=0; 

end; 

procedure Int240ff; 
{ restore original Int24 error handler } 
begin 

SetIntVec($24,01dInt24); { restore old Int24 vector } 
end; 

Figure 3-6. Routines to enable and disable error handler 
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procedure Int24(Flaçs,es,IP,AX,BX,CX,DX,SI,DI,DS,ES,BP:word);interrupt; 
{ general purpose critical error handler } 
type 

ScrPtr = ^ScrBuf; 
ScrBuf = array [1.320] of byte; 

var 
Di^lay, OldLine: ScrPtr; 
AH,AL,OIdAttr: byte; 
Row,Col: integer; 
Action: char; 
ErrMsg: string; 
ErrCode: word; 
Ch: shortint; 
DevAttr: '^word; 
DevName: '^char; 

begin 
ErrCode:=lOResultPrim; { call lOResuIt before to clear } 
if IsMono then Display: = ptr($BCKX),Pred(MSGLINE) * 160) { save screen } 
else Display:=ptr($B800,Pred(MSGLINE)^160); 
New(OldLine); OldLine ̂  : = Display ̂  ; 
AH:=Hi(AX); AL: = Lo(AX); 
Col:=Where a; Row: = Where Y ; 
OldAttr: = TextAttr; ErrMsg: = "; 
if (AH and $80) = 0 then begin 

ErrCode: = Lo(DI); ErrMsg: = 'DOS Critical Error'; 
end 
else begin 

DevAttr: = Ptr(BP, SI+4); { point to device attribute word } 
if (DevAttr and fôOOO) 0 then begin {if bit 15 is on } 

Ch:=0; 
repeat 

DevName: = Ptr(BP,SI+$0A+Ch); ErrMsg:=ErrMsg+DevName ; 
Inc(Ch); 

until (DevName ̂  = Chr(O)) or (Ch7); 
ErrMsg: = ErrMsg + ' not responding; ErrCode: = $02; 

end 
else begn 

ErrMsg:='Bad File Allocation Table*; ErrCode:=$0D; 
end; 

end; 
GotoXY (1,MSGLINE); T extAttr:=ErrorC; 
ChEol; WriteC ',ErrMsg,' ~ A)bort or R)etry?'); Beep; 
repeat Action:=Upcase(Readkey); until Action in [#27,'A','R']; 
Display ̂  :=OldLine ̂  ; Dispose(OldLine); 
GotoXY(Col,Row); TextAttr: = OldAttr; 
case Action of 

#27,'A': be^ CritError:=ErrCode; AX:=0; end; 
R': begn CritError: = 0; AX: = 1; end; 

end; 
ErrCode:=lOResultPrim; { call lOResult after to clear } 

end; 

Figure 3-7. Replacement interrupt 24 handler 
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MS-DOS computers automatically generate a class of errors called "critical 

errors" when certain error conditions are present. Under normal program 

operation, critical errors display an "Abort, Retry, Ignore" message on the screen 

and cause the screen to scroll. Critical errors are generated through the internal 

software interrupt number 24 hex. To prevent the screen scrolling, the software 

must replace the default interrupt 24 handler. Fi^re 3-6 shows the routines used to 

enable and disable the new interrupt 24 critical error handler. Figure 3-7 shows the 

replacement interrupt 24 handler used in this research. 

The foundation for the simulation software developed in this research has 

been presented. The next section presents a discussion of the methods used to 

manipulate the classes in the simulation program. 

E. Class Manipulation 

The previous section presented the basic building blocks of the software 

created in this research. This section presents a discussion of the concept of classes 

as used in the context of object-oriented programming. 

Classes allow implementation of the basic principles of object-oriented 

programming: 

• Information hiding 

• Data abstraction 

• Dynamic binding 

• Inheritance 

Information hiding is implemented in the software by placing the 

declarations for variables inside Pascal units for each class. Each class is only aware 
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of its own format. The objects within a class unit cannot be directly accessed by 

objects of another class. 

Data abstraction is implemented by creating generic class types in the Pascal 

language. These class types are generalized templates that contain sufficient 

information for self-definition. The class types are known globally only as 

place-holders in memory. All support routines in the program are written to 

manipulate these generic class types. 

Dynamic binding is achieved by avoiding direct manipulation of fields within 

objects whenever possible. The message handling ̂ stem described later performs 

the manipulation of the actual data within objects of a class. Messages may change 

during operation of the program and are not reliant on the compilation of the 

program source code. 

Inheritance is a direct result of the combination of class types and Pascal 

units. When objects of a particular class are created, they automatically assume the 

structure of the parent class. Procedures that act on that class type are also 

automatically inherited. This research only allows single-level inheritance 

mechanisms. The following sections provide additional details of the structure of 

classes in this research and the methods used for class manipulation. 

1. Class type 

The data abstraction principle of object-oriented programming dictates that 

classes of objects should be defined in such a manner that the class knows of its own 

structure but all classes share the same basic construction. In a strongly-typed 

procedural language such as Pascal, this abstraction of classes is accomplished 

through the use of a global class type definition. In this research, the class type is 

constructed on a field by field basis with the record defininition shown in Figure 3-8. 
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DBFieldPtr = DBField; 

DBField = record {input 
Title 
FType 
Len 
Decs 
X 
Y 
Page 
ALen 
AOfs 
CCase 
Mand 
Calc 
KType 
OkSet 
Form 
WTitle 

end; 

screen field definition record 
DBTitleStr; 
char; 
byte; 
byte; 
byte; 
byte; 
byte; 
byte; 
mteger; 
char; 
boolean; 
boolean; 
char; 
MenuSet; 
DBFormStr; 
boolean; 

field title ^ 
field type 
field length } 
decimal precision } 
X position on screen i 
Y position on screen } 
field page on screen } 
byte length of field } 
onset into record } 
up/low conversion type } 
mandatoiy entry? } 
calculated field } 
key: N)o D)ups U)nique } 
allowable entry chars } 
formula for this field } 
on screen w/title? } 

Figure 3-8. Class field definition record type 

The DBField record type described in Figure 3-8 is key to the 

object-oriented nature of this research. The information used in this record type is 

used to construct all classes. Note that sufficient information is available for display 

and modification of objects created with this record structure. The fields within the 

DBField record closely parallel typical definitions for object classes under the 

object-oriented paradigm. A combination of DBField records can be used to define 

a class. After a class is defined, generic class manipulation methods can be used on 

the class without knowing the exact structure of the class. 

2. Class creation 

A programmer using the methods developed in this research can quickly 

create new class types by using the DBField record type to define the individual 

fields in a class. The simulation program developed for this research used a separate 

program to define the classes. The separate program allowed for on-screen editing 
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procedure DBPutFieldDef( var DFT:DBReld; Title:DBTitleStr; 
FTypexhar; Len,Decs,X,Y,Page^Len:byte; 
AOts:mteger CCasexhar; 
Mand,Calc:booIean; 
KeyT^xhar; OkSet:MenuSet; 
Fonn:DBFormStr; WTitleiboolean); 

{ put a definition into a DBField } 
begin 

DFT.Title:=Title; DFT.FType:=FType; DFT.Len;=Len; 
DFT.Decs:=Decs; DFT.X:=X; DFT.Y:=Y; 
DFTfage:=Page; DFTj\Len;=ALen; DFTAOfs:=AOfs; 
DFT.CCase: = CCase; DFT.Mand:=Mand; DFT.Calc: = Calc; 
DFT.KType:=KeyTyp; DFT.OkSet:=OkSet; DFT.Form:=Form; 
DFT.Witle:=Witle; 

Figure 3-9. Procedure to place class definition into memory 

function DBLoadDef(FName:string; ObiBuffer,ObjTBuffer,ObjBBuffer:DBBufPtr; 
ObjFiDBReldArray; ObjScreen:WindowPtr):boolean; 

{ load database definition } 
var 

I,NFlds:byte; DBNrinteger; SStr:string[DBMaxFIdLen]; 
DDFR:DBFiIeRec; DDFV:file of DBFileRec; 

bedn 
DBLoadDef:=False; NFlds: =0; FillChar(SStr,Succ(DBMaxFldLen),#32); 
ObiScreen ̂  .ULX: = 1; ObiScreen .ULY:=Pred(DBMINY); 
ObjScreen ̂  .LRX:=80; ObjScreen ̂  .LRY:=Succ(DBMAXY); 
Assign(DDFV,FName); Reset(DDFV); 
FillChar(ObjBuffer ,Succ(DBMAXRECLEN),0); 
FdlChar(ObjTBuffer ,Succ(DBMAXRECLEN),0); 
while not EOF(DDFV) do begn 

Read(DDFV,DDFR); case DDFRRType of 
0: be^ { field deGnition } 

Inc(NFlds); Move(DDFR.FieldDef.Title,ObjFfNFlds] ,SizeOf(DBField)); 
ObjFfNFlds] .Tide:=PadRight(ObjF(NHds] ̂  .Title,' '.DBTITLELEN); 
case ObjFfNFlds] .FType of 

W: begin SStr[0]:=Chr(ObiF[NFldsl .Len); 
DBPutBuffer(SStr,ObjBuffer,ObjF(NFlds] ̂  );end; 

'E': DBPutBuffer(DBBENTRY,ObjBuffer,ObjF[NFlds] ^);end; 
end; 

1: begin { screen line } 
for I:=0 to 79 do case Hi(DDFR.ScrLine.Cont[I]) of 

DDFR.ScrLine.Cont 
DDFR.ScrLine.Cont 
DDFR.ScrLine.Cont 

:=Lo(DDFR.ScrLine.Cont 
:=Lof DDFR.ScrLine.Cont 
:=Lo(DDFR.ScrLine.Cont 

+ (LowC shl 8); 
+ (NormC shl 8); 
+ (InvC shl 8); 3 

end; 
Move(DDFR.ScrLine.Cont,ObjScreen >Add[DDFR.ScrLine.Line],160); 

end; end; 
end; 
Close(DDFV); 
for I:=Succ(NFlds) to DBMAXFIELDS do ObjF(I] ̂  : = ObjF[0] ̂  ; 
Move(ObjBuffer .ObjBBuffer ,Succ(DBMAXRECLEN)); DBLoadDef:=TRUE; 

end; 

Figure 3-10. Procedure to load class definitions 
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procedure ObjectImt( ObjNum:byte; 
var ObjScreen:WindowPtr; 
var ObjBufFer,ObiTBuffer,ObjBBuffer:DBBufPtr; 
var ObjFiDBMeldArray); 

{ initialize memory for use by an object class defimtion } 
var 

I: integer; 
NFlds: byte; 
MemOk: boolean; 

be^ 
MemOk:=True; 
I:=0; 
if MaxAvaiISizeOf(WindowArray) +MinMem then 

GetMem(ObjScreen,SizeOf(windowArray)) 
else 

MemOk:=False; 
if MemOk then 

MemOk:=DBGetWorkingBuffers(ObjBuffer,ObjTBuffer,ObjBBuffer); 
if MemOk then begin 

I:=0; 
while ((lAXFIELDS) and (MemOk)) do begin 

if MaxAvaiISizeOf(DBHeld)+MinMem then 
GetMem(ObjF[I],SizeOf(DBField)) 

else MemOk: = False; 
Inc(I); 

end; 
end; 
if not MemOk then begin 

Msg('InsufGcient memory to run program'); 
Halt; 

end; 
with ObjF[0] ̂  do begin 

Title 
FType 
Len 
Decs 
X 
Y 
Page 
ALen 
AOfs 
CCase 
Mand 
Calc 
KType 
OkSet 
Form 

end; 
if not 

= CharStrC ',10); 
DBBCHAR; 
DBBBYTE; 
DBBBYTE; 
DBBBYTE; 
DBBBYTE; 
DBBBYTE; 
DBBBYTE; 
DBBINT; 
DBUPLOW; 
DBNMAND; 
DBNCALC; 
DBNKEY; 
n; 
DBBFORM; 

DBLoadDef( 

end; 
then Halt; 

DBMakeName(CLSNAMES[ObjNum],0,0), 
ObiBuffer, 
ObjTBuffer, 
ObiBBuffer, 
ObjFjObjScreen) 

Figure 3-11. Procedure to intialize classes 
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of the DBField parameters and then saved the DBField records in a disk file. 

Separate editing of the DBField parameters allows for data abstraction in 

object-oriented programming. 

The simulation program must only load the DBField records from a disk file 

for each class when the program is started. The procedure shown in Figure 3-9 is 

used to place the DBField records into memory where they can later be used by the 

classes as described later. 

A disk file exists for each class in the simulation program. The procedure 

shown in Figure 3-10 is called once for each class in the program to load the 

definition into memory. The procedure shown in Figure 3-11 is used to initialize the 

class for use in the simulation prograriL After the class definitions have been placed 

in memory, the simulation program has sufficient information for class manipulation 

in a generic fashion. 

3. Mapping classes to object types 

The class initialization routines shown in Figure 3-11 create a space in 

memory for a class definition. This memory space is treated in a generic fashion by 

the simulation program. The object-oriented paradigm mandates that the individual 

objects within a class must be aware of their own structure and data contents. This 

awareness is accomplished by mapping the generic class definition to a specific 

Pascal record type within each class unit. By restricting the specific record definition 

of a class to the unit that contains the class methods, information hiding is 

maintained. 

Mapping of class definitions to objects is achieved through the use of pointers 

in Pascal. A pointer is a memory address. The simulation program must only be 

aware of the address of the current working object. Each class unit contains a 
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memory buffer used to hold the current working object. This memory buffer is 

maintained in a fixed and known location. A Pascal record type may then be defined 

within each class unit. The working object is then transferred to the fixed-location 

buffer whenever the object must be manipulated. The procedures shown in Figure 

3-12 are used to move the current object in a class to the working buffer. The 

procedures and functions described in the next section may then be used to 

manipulate the objects within a class. 

Within each class unit, several pointers are maintained to assist in locating a 

specific object when manipulation of the object is required. All objects of a 

particular class are collected in a linked list. The common factors within object 

definition records are pointers to the next and previous instances of an object. 

Pointers to the first, last, and current working object are also maintained within each 

class. Initially, the first, last, and current object pointers are set to the nil memory 

address which points to nothing and indicates an empty list. 

Note how the procedures shown in Figure 3-12 use the information contained 

in the generic class definitions to determine the size and location of fields within an 

object. These procedures allow a field within an object to be directly accessed and 

modified. The actual layout of the data fields in an object are only known within a 

rocedure DBGetBuffer(var FData; OWBuffer:DBBufPtr; DFT:DBFie!d); 
get contents of buffer at defined field} 

begin 
Move(ObjBuffer ̂  [DFTAOfs],FData,DFT.ALen); 

end; 

procedure DBPutBuffer(var FData; ObjBufferiDBBufPtr; DFTiDBField); 
{ put contents into buffer } 
begin 

Move(FData,ObjBuffer [DFT AOfs],DFr.ALen); 
end; 

Figure 3-12. Procedures to load and save object buffers 
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class unit and cannot be externally modified, thus maintaining the information 

hiding principle of the object-orient programming paradigm. 

The most similar action in SLAM to create a new class would be the creation 

of a new type of network node. To create a new network node, a programmer would 

have to write the supporting code for the new node. Next, the programmer would 

have to modify other code segments in SLAM that would potentially reference the 

new network node. All data interdependences at the source code level must be 

examined and possibly modified. The entire process could potentially take a great 

deal of time and resources. The comparative complexity of new class creation in the 

software created for this research is minor because data interdependences between 

classes do not exist in keeping with the object-oriented programming paradigm. 

4. Object creation and manipulation 

Many methods are common between classes. Methods are required to create 

and manipulate specific instances of an object. Given the basic building blocks for 

class definition and access described previously, new instances of an object can be 

created and existing instances of an object can be accessed and manipulated. 

The procedures shown in Figure 3-13 and Figure 3-14 demonstrate object 

creation and deletion. Note that knowledge of the internal structure of a class is not 

required for these operations. This intentional ignorance provides a high level of 

modularity to the program. Qass methods remain relatively simple and portable 

between class units. 

Note the use of the PutObjInBuffer method shown in Figure 3-15 when 

deleting an object through the DeleteCurrObject method. The PutObjInBuffer 

method places an object into the class working buffer discussed previously. After an 

object has been placed in the working buffer, it can be accessed and manipulated 
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function GetNewObject:boolean; 
{ allocate a new object instance and add to end of linked list} 
begin 

GetNewObject:=False; 
if MaxAvail < SizeOf(ObjRec)+MinMem then 

Exit; 
GetMem(TPtr,SizeOf(ObjRec)); 
TPtr ̂  Jrev:=LastObj; 
TPtr^.Next:=nil; 
if TPtr ̂  .Prev <> nil then 

TPtr ̂  .Prev ̂  .Next:=TPtr; 
CurrObJ:=TPtr; 
LastObj:=TPtr; 
if I%stObj=nU then 

FirstObj:=TPtr; 
Move(ObjBBuffer ̂  .CurrObj ̂  .ObjSize); 
GetNewObject:=True; 

end; 

Figure 3-13. Method for object instance creation 

function DeleteCurrObject:boolean; 
be^ 

DeleteCurrObject: = False; 
if CurrObj=nil then Exit; 
TPtr:=CurrObj; 
if FirstObj = TPtr then 

FirstObj:=FirstObj ̂  .Next; 
if LastObj=TPtr then 

LastObj:=LastObj ̂  .Prev; 
if CurrObj .Prev <> nil then 

CurrObj: = CurrObj ̂  .Prev 
else if CurrObj ̂  .Next <> nil then 

CurrObj:=CurrObj ̂  .Next 
else 

CurrObj:=nil; 
if TPtr.Prev < > nil then 

TPtr .Prev ̂  .Next:=TPtr .Next; 
if TPtr Next < > nil then 

TPtr ̂  .Next ̂  .Prev:=TPtr .Prev; 
Dispose(TPtr); 
PutObjInBuffer; 
DeleteCurrObject:=True; 

Figure 3-14. Method for object deletion 
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with the methods shown in Figures 3-16 through 3-23. Note throughout these 

methods that specific data fields within the class definitions are never referenced. 

Figure 3-16 presents the method used to display the current object on the computer 

screen. 

Figure 3-17 shows the method used to clear data from the current object. A 

key value of "BLANK" is placed in the formula field of a class definition if the field is 

to be cleared when this method is invoked. The method shown in Figure 3-18 is 

frocedure PutObjInBuffer; 
put the Current object in the display buffer } 

be^ 
if CurrObj < > nil then Move(CurrObj .ObjBuffer .ObjSize) 
else Move(ObjBBuffer ,ObjBuffer .ObjSize); 

end; 

Figure 3-15. Method to place object in working buffer 

frocedure ShowObject; 
show current object} 

var 
FData: DBFDataArray, 
FldNum: byte; 

begin 
if CurrCIsOWNum then begin 

if (not SStep) then Exit; 
CurrCls:=ObjNum; 

end; 
if ((not SStep) and (CurrObjLastDisp) and (not Paused)) then Exit; 
RestoreWindow(ObjScreen ); 
FldNum: = 1; 
while ObjF[FldNum] ̂  .Page = 1 do begin 

DBGetBuffer(FI)ata,ObjBuffer,ObjF[FldNum] ̂  ); 
with ObjF(FldNum] do 

WriteFast(X,Y,InvC,MakeStr(FData,Len,Decs,FType)); 
Inc(FldNum); 

end; 
LastDisp:=CurrObj; 

Figure 3-16. Method to display an object 
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invoked if all objects of a class are to be cleared. This method traverses the linked 

list of objects and calls the method to clear a single object. 

The methods shown in Figure 3-19 demonstrate how the linked list of objects 

is traversed to select either the previous instance or the next instance of a particular 

object. These methods are used by higher level routines discussed later. 

Many of the instances of an object created during the execution of the 

program require the user to enter data in the data fields. The object-oriented 

paradigm suggests that access to the data fields of an object should be accomplished 

without direct knowledge of the format of that data. The software created in this 

research performs this data entry task in much the same fashion as the object 

Ï
rocedure ClearCurrObiect; 
clear data from object} 

var 
FData: DBFDataArray; 
FldNum: byte; 

begin 
FldNum: = 1; 
while ObjFTFldNum] ̂  .Page=1 do begin 

if StnpLeft(StripRight(ObjF[FldNum] ̂  .Form,' ')='BLANK' then begin 
DBGetBuffer(FData,ObjBBuffer,ObjF[FldNuml ); 
DBFutBuffer(FData,ObjBuffer,ObjI^FidNum] ); 

end; 
Inc(FldNum); 

end; 
end; 

Figure 3-17. Method to clear an object 

procedure ClearAllObjects; 
{ clear data from all objects } 
begin 

TPtr:=FirstObj; 
while TPtr < > nil do begin 

ClearCurrObject; 
TPtr:=TPtr ̂  .Next; 

end; 
end; 

Figure 3-18. Method to clear all instances of an object 
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function GetNextObject:boolean; 
{ get the next object} 
begin 

GetNextObject:=False; 
if CurrObj=nil then Exit; 
if CurrObj J*îext=nil then Exit; 
CurrObj:=CurrObj ̂  .Next; 
PutObjInBuffer; 
GetNextObject:=True; 

end; 

function GetPrevObject:boolean; 
{ get the previous object} 
begin 

GetPrevObject:=False; 
if CurrObj=nil then Ent; 
if CurrObj ̂  .Prev=nil then Exit; 
CurrObj:=CurrObj ̂  .Prev; 
PutObjInBuffer; 
GetPrevObject:=True; 

end; 

Figure 3-19. Methods to get the next or previous object 

creation. The program knows the layout of the objects internally to the class units, 

but access to the specific fields is accomplished in a generic way through the class 

definitions described previously. 

The method shown in Figure 3-20 demonstrates user data entry that 

conforms to the object-oriented paradigm. Note how methods defined previously 

are used to access individual data fields within the object. As each field is accessed, 

the data corresponding to that field is moved to a temporary buffer, manipulated 

according to the class definition, then moved back to the object. 

The methods shown in Figures 3-21,3-22, and 3-23 are used to print the 

contents of all current instances of an object, load all instances of an object from a 

disk file, and save all instances of an object to a disk file. 
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Î
rocedure GetObject(RType:byte); 
enter or update data in an object instance } 

var 
FData: DBFDataArray; 
Fin: boolean; 
FldNum: byte; 
FFld: byte; 
Next: byte; 

begin 
if ((RT^e = 1) and (CurrObj=nil)) then Eat; 
Next: = CR; 
HdNum: = 1; 
Hn;=True; 
while ObjFlFldNum] ̂  .Calc do Inc(FldNum); 
FFld:=HdNum; 
ShowMenu(RType +125); 
repeat 

Fin:=False; 
Move(ObjBuffer .ObiTBuffer ̂  .ObjSize); { save current object } 
ifRTj^ = 2 then begin 

MovefObiBBuffer ̂  ,ObjBuffer ̂  ,ObjSize); { new blank record } 
if not GetNewObject then Next:=ESC; { allocate new object } 

end; 
FldNum:=FFld; 
ShowObject; 
if Next < > ESC then repeat 

DBGetBuffer(RData,ObjBuffer,ObjF[FldNum] ̂  ); 
DBGetField(FData,Next,ObjFlFldNum] ,RType,InvC,EMPTYSET); 
DBPutBuffer(FData,ObjBuffer,ObiHFldNum] ̂  ); 
DBGetNextField(FldNum,Next,ObjF); 

until Next in [ESC,F5,F6,F10]; 
Hn: = (Next in [ESC,F10]); 
case Next of 

ESC: begin {abort} 
Move(ObjTBuffer ̂  ,ObjBuffer .ObjSize); 
if RTy^e=2 then if DeleteCurrObject then ;{ delete object } 

end; 
F5: begm { prewous object} 

Move(ObjBuffer ,CurrObj .ObjSize); 
if not GetPrevObject then ; 

end; 
F6: begin { next object } 

Move(ObjBuffer .CurrObj ̂ ,ObjSize); 
if RTj^e = 1 then if not GetNextObject then ; 

end; 
FIO: Move(ObjBuffer ̂ ,CurrObj ,ObjSize); 

end; 
ShowObject; 

until Fin; 
ShowMenu(CmdList); 
if HilightCommand(0) then ; 

end; 

Figure 3-20. Method to allow user entry of data in an object 



www.manaraa.com

65 

frocedure ReportSimuIation; 
print all object detail} 

var 
FData: DBFDataArray, FldNum: byte; 

begin 
CurrObj:=RrstObj; if CurrObj=nil then Exit; 
if not PrinterReady then Exit; 
while CurrObj <> nil do be^ 

PutObjlnBuffer; FldNum: = 1; 
while ObjFfHdNum] ̂  Jage=1 do be^ 

DBGetËufrer(FData,ObjBufirer,ObjF[FldNum] ̂  ); 
with ObjF[FldNumj ̂  do 

if not WritePrt(Title+*: ' + 
MakeStr(Ftoata,Len,Decs,FType)+PCRLF+PCRLF) then Exit; 

Inc(FldNum); 
end; 
if not WritePrt(PFF) then Exit; 
CurrObj: = CurrObj .Next; 

end; 
end; 

Figure 3-21. Method to print contents of objects 

frocedure LoadOMects; 
load simulation objects from disk } 

var 
TObj: ObjRec; ObF: file of ObjRec; 

begin 
while DeleteCurrObject do ; { delete current objects from memory } 
if not FileExist(DBMakeName(SimName,l,ObjNum)) then Exit; 
Assign(ObF,DBMakeName(SimName,l,ObjNum)); Reset(ObF); 
while (not EOF(ObF)) do begin 

Read(ObF,TObi); 
if not GetNewObject then begin 

Close(ObF); 
MsgCInsufHcient memory to load simulation, program halted'); Halt; 

end; 
Move(TObj,CurrObj ̂  .ObjSize); 

end; 
Close(ObF); CurrObj:=FirstObj; 
PutObjlnBuffer; ShowObject; 

end; 

Figure 3-22. Method to load objects from a disk file 



www.manaraa.com

66 

rocedure SaveObjects; 
save simulation objects to disk } 

var 
ObF: file of ObjRec; 

begn 
{ save objects to disk file } 
TPtr:=FirstObj; 
Assign(ObF,DBMakeName(SimNaine,l,ObjNum)); 
Rewrite(ObF); 
while TPtr <> nil do begin 

Wnte(ObF,TPtr^); 
TPtr:=TPtr.Next; 

end; 
Close(ObF); 

Figure 3-23. Method to save objects to a disk file 

The methods described in this section are all used in a generic way to manipulate 

classes and objects. It is important to recognize that these routines do not rely on 

any particular format of the classes. These routines strictly follow the 

object-oriented philosophy as discussed previously. Generic treatment of classes 

and objects allows methods to be created that will correctly function regardless of 

the structure of the target class. Code portability and programmer efficiency is 

enhanced and chances of programmer error are reduced. 

The software created in this research now has general object-oriented 

capabilities. The primaiy goal of this research is to develop object-oriented 

simulation capabilities in a strongly-typed procedural language. The general 

routines described thus far are used as building blocks for the next phase of the 

software development. The next section provides a description of the 

object-oriented simulation capabilities created in this research. 
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F. Object-Oriented Simulation Facilities 

The methods discussed in the previous section treat classes and objects in a 

generic way. The primary goal of this research is to integrate object-oriented 

simulation capabilities into a strongly-typed procedural language. This section 

describes the object-oriented facilities developed in direct support of discrete-event 

simulation. 

The first step toward object-oriented simulation is to define the classes 

necessary for discrete-event simulation. Next, the basis for message handling is 

presented. The current and future events calendar responsible for control of the 

simulation is then described followed by an overview of the simulation clock. 

Finally, the messages used in discrete-event simulation are presented. 

1. Simulation classes 

There are four primary classes that must be incorporated into the simulation 

program to support the desired simulation environment. They are the "Simulation" 

class, the "Entity" class, the "Routing" class, and the "Server/Queue" class. 

In keeping with the object-oriented paradigm, the data that are relevant to 

each of these classes are maintained within the associated instance variables. It is 

important to note that the use of classes as a generic representation of simulation 

objects allows the generation of multiple instances of an object. A complex 

simulation model can then be built by using instances of an object without regard to 

the interaction between these objects which is automatic. 

Figures 3-24 through 3-27 show the internal structure of each of the 

simulation classes. Note that these record structures are only known within the class 

and therefore follow the information hiding construct of object-oriented 

programming. 
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ObjRec = record { simulation object record } 

end; 

Status: 
Instance: 
Desc: 
MaxTime: 
CurrTime: 
CurrQty: 
MinTInSys: 
MaxTInSys: 
Av^nS^: 
Next: 
Prev: 

longint; 
Instiype; 
strin^25]; 
real; 
real; 
real; 
real; 
real; 
real; 
ObiRecPtr; 
ObjRecPtr; 

Figure 3-24. Simulation class definition 

ObjRec = record { entity object record } 
Status: 
Instance: 
TypeCode: 
CurrLoc: 
CreateTime: 
StartTime: 
TimelnSys: 
WUlFail: 
Next: 
Prev: 

end; 

longint; 
InstType; 
real; 
InstType; 
real; 
real; 
real: 
boolean; 
ObiRecPtr; 
ObjRecPtr; 

Figure 3-25. Entity class definition 

ObjRec = record { routing object record } 
Status: longint; 
Instance: InstType; 
Desc: string[25]; 
EntType: real; 
CurrLoc: InstType; 
Dist: InstType; 
Mean: real; 
Std: real; 
FailPerc: real; 
FailTo: InstType; 
NextLoc: Instl^»; 
BalkLoc: InstTj^; 
Next: ObjRecPtr; 
Prev: ObjRecPtr; 

end; 

Figure 3-26. Routing class definition 
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ObJRec = record { server/queue object record } ObJRec 
Status: longint; 
Instance: InstType; 
Desc: string[25]; 
Capacity: real; 
SrvStatus: StatusType; 
CurrQty: real; 
MaxQt^ real; 
AvgQty real; 
TotalQty: real; 
UtUized: real; 
MinTBA: real; 
MaxTBA: real; 
MeanTBA: real; 
MinTime: real; 
Ma/Time: real; 
MeanTime: real; 
LastArrival: real; 
Next: ObjRecPtr; 

ObjRecPtr; Prev: 
ObjRecPtr; 
ObjRecPtr; 

end; 

Figure 3-27. Server/queue class definition 

The data contained within each object is used to track key simulation 

parameters during the execution of the simulation program. Object data are 

constantly presented to the user during program execution. Some of the data are 

initially entered by the user of the program while other data are maintained by the 

program. In all cases, no object can directly access data in another object. All 

interaction between objects is performed through messages passed between objects. 

2. Message handling 

The foundation of the object-oriented simulation program created in this 

research is the message handling system Messages are the only form of 

communication between objects. Figure 3-28 shows the format of messages in the 

simulation program. Every message in the program follows the standard message 

format, although some of the fields in the message packet may not be used. 
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MsgPacketType = record 
FromCk: byte; 
Fromlnst: InstType; 
ToCls: byte; 
Tolnst: InstType; 
Message: Msdl%pe; 

sal; 

end; 

Number: rea 
Clock: real; 
Next: Ms^acketPtr; 

from which class } 
from which instance } 
to which class } 
to which instance } 
the actual message } 
a number to pass in message } 
time to execute message (-1.0 = immediate) } 
pointer to next message } 

"igure 3-28. Message packet format 

The globally accessible procedure shown in Figure 3-29 is used to place 

messages on the message queue. Messages are placed in the message queue 

according to the time entered in the clock field of the message. The messages are 

automatically stored in time sorted order. Messages are then taken one at a time 

from the head of the message queue. 

The use of an ordered list for the message queue directly corresponds to the 

events calendars found in discrete-event simulation. Strict adherence to the 

time-ordered structure of the message queue ensures that messages in the 

simulation system will follow the time-ordering necessary for simulation 

synchronization. The use of object-oriented message passing effectively removes the 

necessity for the traditional current and future events calendars. 

Figure 3-30 shows the main routine used to control the simulation program. 

The main program commands are implemented in this routine. The main loop of 

this routine checks for user input and acts on that input if found. If no user input is 

pending, control is passed to the message checking routine shown in Figure 3-31. 

This routine is aware of the different classes and uses the message packet 

parameters to determine where the message should be sent. Note that this routine 

does not require knowledge regarding the internal structure of the classes. 
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procedure SendMsg(FromCls:byte;FromInst:InstType; ToCk:byte; ToInst:InstType; 
MessagetMsgfType; Number,Clock:real); 

{ send a Message to/from the indicated Class, Instance, optionally with Number } 
var 

MsgPacket: MsgPacketPtr; 
TPtr,Lptr: MsgPacketPtr; 
Done: boolean; 
MsgNum: byte; 

begin 
if MaxAvail < = SizeOf(MsgPacketType)+MinMem then begin 

MsgCInsufficient memory for message queue, program aborted'); Halt; 
end; 
GetMem(MsgPacket,SizeOf(MsgPacketType)); { allocate message memory } 
MsgPacket ̂  .FromCls:=FromCls; assign from class } 
VrenPanlrf»*- FrnmTnct» — PrnmTnc»- assign from InStanCC } 

assign to class } 
assign to instance } 
assign message } 
assign number } 
assim clock time } 
display message } 

MsgPacket ̂  .Fromlnst:=Fromlnst; 
MsgPacket ̂  .ToCls:=ToCls; 
MsgPacket .Tolnst:=Tolnst; 
MsgPacket ̂  .Message; = Message; 
MsgPacket ̂  .Number:=Number; 
MsgPacket ̂  .Clock:=Clock; 
if SStep then be^ 

MsgNum:=Ord(MsgPacket ̂  .Menage); 
WnteMsg(NormC,'Send: ' + ClsNames[MsgPacket .FromCls] + 

+MsgPacket ̂  .Fromlnst+ 
' to '+ClsNames[MsgPacket .ToCls]++MsgPacket .Tolnst + 
' +SoopMsgs[Ms^um]+"" + 
MakeStr(Mstfacket ̂  .Nimiber,0,2,'R') + 

+MakeStr^sgPacket .Clock,0,2,'R')); 
if GetAKeyO then ; 

end; 
Inc(MsgCount); 
WriteAt(60,l,CHead+MakeStr(MsgCount,5,0,'W)); 
MsgPacket .Next: = HrstMsg; f start as new first message } 
if MrstMsg=nil then be™ {this is the only message } 

FirstMsg:=MsgPacket; Exit; 
end; 
if MsgPacket .Clock < FirstMsg .Clock then begin { belongs first} 

MsgPacket ̂  .Next:=HrstMsg; 
HrstMsg:=MsgPacket; 
Exit; 

end; 
Done:=False; 
TPtr:=FirstMsg; { point to first message } 
LPtr:=TPtr; 
while (not Done) do begin { find appropriate position } 

MsgPacket ̂  Next:=TPtr ^ .Next; 
TPtr .Next:=MsgPacket; 
if TPtrHrstMsg then LPtr .Next: =TPtr; 
Done: = (MsgPacket ̂  .Next=nil); 
if not Done then begin 

LPtr: = TPtr; 
TPtr:=MsgPacket ̂  .Next; 
Done: = (Ms^acket .Clock > TPtr ̂  .Clock); 

end; 
end; 

end; 

Figure 3-29. Message sending procedure 
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frocedure MessageHandler; 
main program message handler } 

var 
Ch: byte j f working character variable } 
M: longmt; { temporary memory check variable } 

be^ 
imtialize currently diplayed class } 
current simulation is paused } 
single step is off } 
message count is zero } 
set to a new simulation } 
clear the message queue } 

CurrCls: = l; 
Paused:=True; 
SStep:=False; 
MsgCount:=0; 
SimClock:=0.0; 
FirstMsg:=nil; 
WriteAt(l,l ,CHead + 

'SIMULATION WITH OBJECT-ORIENTED PROGRAMMING ' + 
+'Msg Count :Sim:'); 

SimName: =' '; I no current simulation } 
ShowMenu(l); { display menu } 
if HilightCommand(O) then ; { hilite command list } 
SendMsg(MAILMAN,NINST,CurrCls,NINST,SHOW_CURR_OBJ,0.0,PRIORITY); 
repeat { now go into command loop } 

if CurrCommand < > 0 then begin { if user command is pending, act on it } 
case CurrCommand of 
SimulationCIear; { clear the data in the simulation objects } 
SendMsg(MAILMAN,NINST,CurrCls,NINSTJDELETE_OBJ,0.0,PRIORITY); 
SendMsg(MAILMAN,NINST,CurrCls,NINST,ENTER_OBJ,0.0,PRIORITY); 
SimulationLoad; 
SimulationOptions; 
simulations tartStop; 
SimulationReport; 
SimulationSave; 

Load simulation from disk } 
set simulation options } 
Proceed with or Pause current simulation } 
Report (print) simulation reports } 
Save simulation to disk } 

SendMsg(MAlLMAN,NINST,CurrCls,NINST,UPDATE_OBJ,0.0,PRIORITY); 
10: if GetBool('Are you sure you want to quit?') then Halt; { Quit program } 

end; 
CurrCommand:=0; 

end else if Keypressed then begin 
Ch:=KeyBoard(AllChar+ 
[BACK,CR,ESC,LEFT,RIGHT,PGUP,PGDN,F5,F6,178],2); 

if Ch=ESC then Ch:=81; 
case Ch of 

F5:SendMsg(MAILMAN,NINST,CurrCls,NINST,SHOW PREV OBJ,0.0,PRIORITY); 
F6:SendMsg(MAILMAN,NINST,CurrCls,NINST,SHOWi;NEXT~OBJ,0.0,PRIORITY); 
PGUP:begin { show previous class and its current object instance } 

CurrCls:=Succ((CurrCls + MaxClasses-2) mod MaxClasses); 
SendMsg(MAILMAN,NINST,CurrCls,NINST,SHOW_CURR_OBJ,0.0,PRIORITY); 
end; 

PGDN:begin { show next class and and its current object instance } 
CurrCls:=Succ(CurrCls mod MaxClasses); 
SendMsg(MAILMAN,NINST,CurrCls,NINST,SHOW_CURR_OBJ,0.0,PRIORITY); 
end; 

BACKjLEFT: if HilightCommand(-l) then; 
SPACE,RIGHT: if HilightCommand(l) then; 
1333..47,58..126: RunCommand(Ch); 

end; { case } 
end else CheckMessages; { check the message queue } 
until False; { never leave this loop! (program quits from HALT) } 

end; 

Figure 3-30. Main program loop 
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Procedure CheckMessages; 
check the message queue for pending messages } 

var 
MData: MsgPacketType; { avoid pointer type to retain data } 
TPtr: Ms^acketPtr; 
Done: boolean; 
MsgNum; byte; 

begin 
Done: = (HrstMsg=nil); 
while not Done do be^ 

if Keypressed then Exit; { allows user to interrupt} 
" '"i then Exit; {simulation paused } 

MsgNu 
WnteMsg(NormC,'Recv:"' + 

ClsNames[KrstMsg ̂  .FromCls]+V+HrstMsg ̂  .Fromlnst + 
' to '+ClsNames[FirstMsg .ToCls]++FirstMsg ̂  Tolnst + 
' +SoopMsgs[MsgNumf + ' + 
MakeStr(FirstMsg^ .Number,0,2,'R') + + 
MakeStr(HrstMsg ̂  .Clock,0,2,'R')); 

if GetAKey=ESC then be^ 
Paused: =True; 
ShowMenu(l); { show the correct command list } 
if HilightConunand(0) then ; 
Exit; 

end; 
end; 
if FirstMsg ̂  .ClockSimClock then be^ { update the simulation clock } 

SimClock:=FirstMsg ̂  .Clock; 
SendMsg(MAILMi^,NINST,SIMULATE,NINST, 

UPDATE_CLOCK,SimClock,PRIORITY); 
end; 
MData:=FirstMsg I get message from front of message queue } 
TPtr:=FirstMsg; { delete the message & reset pointers } 
FirstMsg:=RrstMsg ̂  .Next; 
Dispose(TPtr); 
Dec(MsgCount); 
WriteAt(60,l,CHead+MakeStr(MsgCount,5,0,'W)); 
case MData.ToCls of { send message to appropriate place } 

MAILMAN: case MData.Message of ( message to mailman, handle it here } 
END SIMULATION : begin { ena current simulation } 

^7sg('Simulation completed'); 
Paused:=True; 
ShowMenu(l); 
if HilightCommand(O) then ; 

end; 
end; 
SIMULATE: SimClass(MData); 
ENTITY: EntClassfMData); 
ROUTING: RteClass(MData); 
SERVQUE: SrvClass(MData); 

end; 
Done: = (RrstMsg=nil); 
if not Done then Done: = (FirstMsg .Clock > PRIORITY); { no priority messages } 

end; 
end; 

Figure 3-31. Message handler (MAILMAN) 
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MsgType = ( 
NMSG, 
CLEAR OBJ, 
DELETE OBJ, 
ENTER OBJ, 
LOAD ÔBJ, 
SAVET)BJ, 
SHOW" CURR OBJ, 
SHOW~NEXT~OBJ, 
SHOWIPREVOBJ, 
UPDATE OBJ, 
UPDATELCLOCK, 
GEN ARR_TIME, 
GEN"ARRIVAL, 
GET>IEXT_RTE, 
GET ALT RTE, 
GET~FAIC RTE, 
GET"FAILIRTRY, 
REQ~SQ ENTRY, 
REQ~SQ~GRANTED, 
REQ'SQ DENIED, 
REQ'SQICOMP, 
SCH3O_COMP, 
SQ_COMPLETE, 
ENTITY SO COMP, 
ENTITYILEAVE_SQ, 
ENTITY SET FAIL, 
ENTITY~NO_FAIL, 
ENTITY~DEP, 
LEAVE3YS, 
REPORT_SIM, 
END SIMULATION 

); 

nil message } 
clear data fields in objects of a class } 
delete an instance of an object j-
enter (user) new data for an object} 
load simulation objects from disk } 
save simulation objects to disk } 
show current instance of an object} 
show next instance of an object} 
show previous instance of an object} 
update (user) the data for an object} 
update the simulation clock } 
determine which arrival to generate & when } 
general next arrival of an entity } 
get next routing for an object | 
request for service/queue demed, get alternate route } 
request for service/queue after failure } 
request for service/queue denied after failure, retry } 
entity request for entry to service or queue } 
request for service/queue granted } 
request for service/queue denied } 
request completion of service time ) 
schedule the completion of service } 
a service has been completed} 
tell entity is has completed a service/queue } 
tell service/queue that entity has left} 
set an entity to fail service ^ 
set an entity not to fail service } 
entity has departed system } 
tell entity to leave system } 
report on the simulation } 
end the current simulation } 

Figure 3-32. Messages used in discrete-event simulation 

3. Discrete-event simulation messages 

The procedures shown previously demonstrate the interaction of the 

messages in the object-oriented simulation software with the objects. This section 

provides details of the specific messages used for discrete-event simulation. Figure 

3-32 lists all the messages used in the simulation software. 

The procedures shown in Figures 3-33 through 3-36 show the specific 

messages for each class. Note how the messages are transformed into specific 
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frocedure SimClass(MsgPacket:Ms^acketType); 
interface to the outside world } 

begin 
MData:=MsgPacket; 
case MData.Message of 

ClearAllObjects; 
if DeleteCurrObject then ShowObject; { delete omect instance } 
GetObject(2); 
LoadObjects; 
SaveObjects; 

ShowObject; 

clear all data from objects } CLEAR OBJ; 
DELETE OBJ: 
ENTER OBJ: 
LOAD_ÔBJ: 
SAVE OBJ: 
SHOW CURR_OBJ: 
SHOW_NEXT_OBJ: , , 
SHOW PREV OBJ: if GetPrevObject then ShowObject; { show prev object instance 

' update object instance data } 

enter object instance data } 
load simulation objects from disk } 
save simulation objects to disk } 
show current object instance } 

UPDATE_OBJ: GetObject(l); 
UPDATE CLOCK: UpdateClock; ^ 

if GetNextObject then ShowObject; ^ show next object instance | 

end; 

REPORT_SIM: 
ENTITY_DEP: 
end; 

ReportSimulation; 
EntityDeparted; 

update simulation clock } 
print object detail} 
entity has left system } 

Figure 3-33. Simulation class messages 

Î
rocedure EntClass(MsgPacket:Ms^acketType); 
interface to the outside world } 

begin 
MData: = MsgPacket; 
case MData.Message of 

end; 

CLEAR OBJ: 
DELETE OBJ: 
LOADOBJ: 
SAVE OBJ: 
SHOW" CURR_OBJ: 
SHOWNEXT OBJ: 
SHOWIPREVOBJ: 
GEN_ARRIVAL: 
REQ SQ_GRANTED: 
REQ~SQ DENIED: 
ENTrrYjSQ_COMP: 
ENTITY_SET_FAIL: 
ENTITY NO_FAIL: 
LEAVE_SYS: 
end; 

Clear AllObjects; 
if DeleteCurrObject t 
LoadObjects; 
SaveObjects; 

ShowObject; 

^ clear all data from objects } 
ien ShowObject; { delete object instance } 
load simulation objects from disk } 
save simulation objects to disk } 
show current object instance } 

if GetNextObject then ShowObject; ( show next object instance I 
if GetPrevObject then ShowObject; { show prev object instance } 
GenerateArrival; { generate an entity arrival} 
RequestServQueGranted; { request for service/queue granted } 
RequestServQueDenied; { request for service/queue denied } 
Ser^ueComplete; { service/queue completed, need next route } 
SetFail(True); 
SetFail(False); 
LeaveSystem; 

set entity to fail service ^ 
set entity to not fail service } 
entity leaves simulation } 

Figure 3-34. Entity class messages 
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Procedure RteClass(MsgPacket:MsgPacketType); 
interface to the outside world } 

begin 
MData:=MsgPacket; 
case MData.Message of 
CLEAR_OBJ: ClearAllObjects; { clear all data from objects } 
DELATE OBJ: if DeleteCunrObject then ShowObject; { delete object instance } 
ENTER_OBJ: 
LOAD OBJ: 
SAVE "OBJ: 
SHOW CURR 
SHOW"NEXT 
SHOWTREVOBJ: 

GetObject(2); 
LoadObjects; 
SaveObjects; 
OBJ: ShowObject; 

enter object instance data } 
load simulation objects from disk } 
save simulation objects to disk } 

{ show current object instance } 

UPDATE OBJ: 
GEN ARR_TIME: 
GET">IEXT_RTE: 
GET"ALT_RTE: 
GET~FAIL RTE: 

OBJ: if GetNextObject then ShowObject; ^ show next object instance | 
if GetPrevObject then ShowObject; { show prev object instance 

GetObject(l); { update object instance data } 
GeneratCiAjrivalTime { determine which arrival to generate & when } 
GetNextRoutefO); 
GetNextRoute(l); 
GetNextRoute(2); 

GET FAIL RTRY: GetNextRoute(3) 

end; 

get next routing for an entity } 
get next routing for an entity, denied before } 
get failure route for an entity, failed service } 
get failure route retry } 

SCHJSQ_COMP: ScheduIeSrvQueCompletion; { schedule service/queue completion } 
end; 

Figure 3-35. Routing class messages 

procedure SrvClass(MsgPacket:MsgPacketType); 
{ interface to the outside world } 
be^ 

MData; = MsgPacket; 
case MData.Message of 
CLEAR_OBJ: ClearAllObjects; { clear all data from objects } 
DELETE OBJ: if DeleteCurrObject then ShowObject; { delete object instance } 
ENTER_OBJ: GelObject(2); enter object instance data} 
LOAD OBJ: LoadObjects; load simulation objects from disk } 
SAVEjpBJ: SaveObjects; save simulation objects to disk } 
SHOW_CURR_OBJ: ShowObject; { show current object instance } 
SHOW^NEXT OBJ: if GetNextObject then ShowObject; f show next o 
SHOW~PREV_OBJ: if GetPrevObject then ShowObject; { show prev object instance 
UPDATE OBJ: GetObject(l); update object instance data} 
REPORTSIM: ReportSimuIation; 
REQ_SQ "ENTRY: RequestServiceQueueEntry; 
SO COMPLETE: SrvQueCompletion; 
ENTITY LEAVE SO: EntityLeaveSrvQue; 
end; 

end; 

if GetNextObject then ShowObject; f show next object instance I 
L_ r., , object instance} 

-r J rR Hatn \ 
print object detail} 
enti^ is requesting entry } 
service/queue completion } 
tell service/queue tnat entity has left} 

Figure 3-36. Server/queue class messages 
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procedures through the use of the Pascal case statement. Using the case statement 

with messages in this fashion allows the use of standard Pascal in conjunction with 

object-oriented programming techniques. The inherent speed and flexibility of the 

structured language is thus maintained. Note that only 30 messages are required for 

the entire simulation system. 

G. Simulation Message Flow 

The proper function of the object-oriented simulation program relies heavily 

on the correct sequence of message passing between objects. The previous section 

showed the specific messages used in the simulation program. This section 

demonstrates the flow of messages during execution of the simulation program. 

1. Generating arrivals 

The first activity that must take place when the simulation is started is the 

generation of the first arrival. The simulation clock is initialized to time zero. The 

main loop of the program then issues a message to the routing object to schedule the 

arrival of the next entity. Figure 3-37 shows the method that is invoked when the 

GEN ARR TIME message is sent to the routing object. 

Note how the method shown in Figure 3-37 generates an arrival time for the 

future arrival of an entity. As stated previously, messages are placed in a single 

queue ordered by the clock time of the message. Messages will not be passed on 

until the current simulation clock is equal to or greater than the message time. 

Arrival times are generated for the future and the associated message to actually 

generate the arrival, GEN ARRIVAL, is placed in the message queue to be 

executed at some future time. Scheduling of arrivals in this fashion creates an 
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Ï
rocedure GenerateArrivalTime; 
determine which arrivais to generate & when (entity types if Number=0.0) } 

var 
ATime: real; 
Found: boolean; 

begin 
{ find the first route record for the desired entity instance & type } 
TPtr:=PointTo(NINST,MData.Number); 
while TPtr <> nil do be^ 

CurrObj: = TPtr; { display the object for reference } 
PutObjtoBuffer; 
ShowObject; 
{ generate the arrival along with time (offset by simulation clock) } 
ATime: = GetDistNumber(TPtr ̂  .Dkt,TPtr ̂  .Mean,TPtr .Std); 
{ send message indicating that an entity of should be generated } 
SendMsg(ROUTING,NINST,ENTITY,NINST, 

GEN_ARRIVAL,TPtr ̂  .Ent'^e,MData.Clock+ATime); 
{generate additional arrivals if desired } 
u MData.Number < 0.0 then Exit; 
repeat 

TPtr: =TPtr .Next; 
if TPtr < > nil then Found: = (TPtr ̂  .CurrLoc=NINST); 

until ((TPtr=nil) or (Found)); 
end; 

end; 

Figure 3-37. GEN_ARR_TIME method in routing class 

ordered queue of arrivals in a simulated future events calendar. Synchronization is 

automatically maintained. 

Figure 3-38 shows the method invoked when the GEN ARRIVAL message 

is sent from the routing objects to the entity objects. Entity objects are created 

dynamically when the GEN ARRIVAL message is invoked. The creation time and 

other pertinent data are recorded for the entity. The entity object then issues a 

message GET NEXT ROUTE to the routing objects to determine where the entity 

should go. The entity object also issues another GEN ARRIVAL message at the 

end of this method to schedule the next arrival, thus keeping the system moving. 
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procedure GenerateArrival; 
{ generate an arrival of an entity } 
oe^ 

{ create a new entity } 
u not GetNewObject then Exit; 
{mark it's Instance id, arrival time, type code, status, etc...} 
CurrObi .TypeCode:=MData J^umoer; 
CurrObj ̂  .CreateTime:=MData.Clock; 
PutObjInBuffer; 
ShowObject; 
{ request routing for self: "Where do I go?"} 
Sen{£Msg(ENnTY,TPtr ̂  instance,ROUnNG,TPtr ̂  .CurrLoc, 

GET_NEXT_RTE,TPTr ̂  .'I^eCode,SimClock); 
generate next arrival of self } 
endMsg(ENnTY,NINST,ROUTING,NINST, 

GEN_ARR_TIME,TPtr ̂  .TypeCode,SimClock); 
end; 

Figure 3-38. GEN ARRIVAL method in entity class 

2. Routing entities 

After an entity object has been generated it must be routed to a queue or a 

service. All information regarding the route of an entity through the system is 

contained in the routing class. The ordered nature of the message queue guarantees 

that there will be a message to the routing objects requesting the next route for an 

entity after the entity has been created. This message is GET NEXT RTE. Figure 

3-39 shows the method invoked in the route class upon receipt of the 

GET NEXT RTE message. 

The GET NEXT RTE method is the most complicated of all the messages 

in the simulation system.There are four codes that can be passed to this method 

depending on the previous state of the entity requesting a route. Initially, an entity 

request a primary route. If the primaiy route is blocked when the request for entry 

to a service or queue is made, then a balk route will be requested. In addition, 

entities may be predestined to fail service. Under failure conditions, a failure route 

may be specified by the user and that route will be requested when the failure occurs. 
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J trocedure GetNextRoute(RouteCode:byte); 
get the next routmg for an entity and send appropriate messages } 

RouteCode: 0 - Get primary next location } 
1 - Get alternate route after denial of primary } 
2 - Get fail route after failure of service } 
3 - Retry getting fail route after denial} 

be^ 
{ find the first route record for the desired entity instance & type } 
TPtr:=PointTo(MData.ToInst,MData.Number); 
if TPtr=nil then Exit; 
CurrObj:=TPtr; 
PutObjInBuffer; 
ShowObiect; 
{if next location is blank, then leave system, otherwise request entry to location } 
if (((TPtr ̂  .NextLoc=MNST) and (RouteCode in£0,11)) or 

((TPtr ̂  .FailTo=NINST) and (RouteCode in p^]))) then begin 
SendMsg(ROUTING,NINST,ENTITY,MData.FromInst, 

LEAVE_SYS,0.0,SimClock); 
end 
else case RouteCode of 

0:begin { no prior denials, try first location } 
if TPtr .BalkLoc=NINST then 

SendMsg(ENTITY,MData.FromInst,SERVQUE,TPtr .NextLoc, 
REQ_SQ_ENTRY,0.0,SimClock) 

else 
SendMsg(ENTITY,MData.FromInst,SERVQUE,TPtr ̂  .NextLoc, 

REQ_SQ_ENTRY,1.0,SimClock) 
end; 
l:if TPtr ̂  .BalkLoc=NINST then bemn 

{ prior request failed, retry with clock incremented to next completion time } 
SendMsg(ENTITY,MData.FromInst,SERVQUE,TPtr ̂  .NextLoc, 

REQ_SQ_ENTRY,0.0,SimClock); 
end 
else begin { prior request denied, try alternate route } 

SendMsg(ENTlTY,MData.FromInst,SERVQUE,TPtr ̂  .BalkLoc, 
REQ_SQ_ENTRY,0.0,SimClock); 

end; 
2:begin { service failed, request failure route } 

SendMsg(ENTITY,MData.FromInst,SERVQUE,TPtr .FailTo, 
REQ_SQ_ENTRY,0.0,SimClock); 

end; 
3:begin { service failed, request failure route repeated } 

SendMsg(ENTITY,MData.FromInst,SERVQUE,TPtr ̂  .FailTo, 
REQ_SQ_ENTRY,0.0,SimClock); 

end; 
end; 

end; 

Figure 3-39. GET_NEXT_RTE method in routing class 
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Whenever an entity is to be routed to a service or queue, the 

REQ_SQ_ENTRY message is placed on the message queue at the current 

simulation clock time. The route code to use is determined in the server/queue class 

after the initial request for entry is made. 

If there is no next route for an entity then the entity will be forced to leave 

the system when the routing objects issue the LEAVE SYS message. The process 

followed when an entity leaves the system is described later. 

3. Requesting service or queue entry 

The routing objects issue the REQ_SQ_ENTRY message to the 

server/queue objects with data indicating the service or queue to request. The 

method invoked in the server/queue class when the REQ_SQ_ENTR Y message is 

received is shown in Figure 3-40. The capacity of the requested service/queue is 

checked, and if space is available, the REQ SQ GRANTED message is sent to the 

entity object. If the request is denied, then the server/queue object determines if an 

alternate route is available or if the current request should be rescheduled. Note 

that if the current request is rescheduled, the request is delayed until the next 

completion time to avoid deadlocks in the system. If an alternate route should be 

tried, then the REQ_SQ_DENIED message is sent to the entity. 

Figures 3-41 and 3-42 show the methods invoked by the entity object upon 

receipt of the REQ_SQ_GRANTED or REQ_SQ_DENIED messages. If entry to 

the service or queue is granted the entity first sends a message to the previous 

location that the entity is leaving. Next, a message is sent to the routing class to 

request the end of service time for the new location. Figure 3-43 shows the method 

invoked when the entity issues the EN1T1Y_LEAVE_SQ to the prior service or 

queue object. Note that this method issues no further messages. 
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?rocedure RequestServiceQueueEntry; 
an entity is requesting entry } 

begin 
TPtr:=PointTo(MData.ToInst); 
if TTtr=nil then Exit; 
if TPtr ̂ .CurrQty< TPtr ̂ ..Capacity then be^ { entry is granted } 

{set to busy status} 
TPtr ̂  .SrvStatus:=BUSY; 
TPtr ̂  .CurrQty:=TPtr ̂  .CurrQty+1.0; {increase current contents by one } 
TPtr ̂  .TotalQty:=TPtr ̂  .TotalQty+1.0; {increase total quantity by one } 
{ check for max quantity } 
u TPtr .CurrQtyTPtr ̂  .MaxQty then TPtr ̂  .MaxQty.=TPtr .CurrQty; 
{ check for min interarrivai time } 
u (((SimClock-TPtr ̂  .LastAmval) > 0.0) and 

( ((SimClock-TPtr .LastArrival) > .MmTBA) or 
(TPtr'^.MmTBA=0.0))) 
then TPtr ̂  .MinTBA: = (SimClock-TPtr .LastArrival); 

{ check for max interarrivai time } 
u (SimClock-TPtr .LastArrival) > TPtr ̂  .MaxTBA then 

TPtr ̂  .MaxTBA: = (SimClock-TPtr ̂  .LastArrival); 
{ set mean time between arrivals } 
TPtr ̂  .MeanTBA: = ((TPtr .MeanTBA*(TPtr .TotalQty-1.0)) + 

(SimClock-TPtr ̂  .LastArrival))/lTtr ̂  .TotalQty; 
{ set last arrival time } 
TPtr .LastArrival:=SimClock; 
{ send message indicating request was granted } 
SendMsg(SERVQUE,TPtr .Instance,ENTITY,MData.FromInst, 

REQ_SQ_GRANTED,0.0,SimClock); 
end 
else begin { send message indicating request denied } 

if MData.Number=0.0 then { no alternate, retry current } 
SendMsg(SERVQUE,TPtr ̂  .Instance,ENTITY,MData.FromInst, 

REQ_SQ_DENIED,0.0,NextCompTime(TPtr .Instance)) 
else { there is an alternate route } 

SendMsg(SERVQUE,TPtr .Instance,ENTITY,MData.FromInst, 
REQ_SQ_DENIED,0.0,SimClock); 

end; 
CurrObj:=TPtr; 
PutObjInBuffer; 
ShowObject; 

Figure 3-40. REQ_SQ_ENTRY method in server/queue class 



www.manaraa.com

83 

frocedure RequestServQueGranted; 
request for service/queue was granted, move entity to new location } 

be^ 
TPtr:=PointTo(MData.ToInst); 
if TPtr=nil then Exit; 
{ send message to prior location that entity is leanng } 
SendMsg(ENnTY,TPtr ̂  .Instance,SERVQUE,TPtr ̂  .CurrLoc, 

ENTITY_LEAVE_SQ,SimClock TPtr ^ .StartTime,SimClock); 
{ set service failure flag"off } 
TPtr ̂  .WillFail:=False; 
{ set current location } 
TPtr .CurrLoc:=MData.FromInst; 
{ set current location start time } 
TPtr ̂  .StartTime:=SimClock; 
CurrOW: =TPtr; 
PutObjmBuffer; 
ShowObject; 
{ send return message to indicate that entity is moved and completion should be scheduled } 
SendMsg(ENTITY,TPtr ̂  .Instance,ROUTING,TPtr .CurrLoc, 

SCH_SQ_COMP,TPtr ̂  .TypeCode,SimClock); 

Figure 3-41. REQ_SQ_GRANTED method in entity class 

procedure RequestServQueDenied; 
{ request for service/queue was denied, attempt to reschedule/reroute } 
begin 

TPtr:=PointTo(MData.ToInst); 
if TPtr=nil then Exit; 
CiurObj: =TPtr; 
PutObjInBuffer; 
ShowObject; 
if TPtr ̂  .WillFail then begin { entity was destined to fail service } 
SendMsg(ENTIT Y.TPtr .Instance,ROUTING,TPtr ̂  .CurrLoc, 

GET_FAIL_RTRY,TPTr ̂  .TypeCode,SimClock); 
end 
else begin { request alternate routing for entity } 
SendMsg(ENTITY,TPtr ̂  .Instance,ROUTING,TPtr .CurrLoc, 

GET_ALT_RTE,TPTr .TypeCode,SimClock); 
end; 

Figure 3-42. REQ SQ DENIED method in entity class 
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Procedure EntityLeaveSrvQue; 
tell service/queue that entity is leaving } 

be^ 
TPtr:=PointTo(MData.ToInst); 
if TPtr=nil then Ent ; 
{ set avg contents and utilization } 
TPtr ̂  AvgQty: = (((TPtr .TotalQty-l,0)*TPtr AvgQty) + 

TPtr .CurrQty)/TPtr ̂  .TotalQty, 
TPtr.Utilized:=TPtr^ AvgQty*100.0/TPtr^ .Capacity, 
{ reduce current quantity by one } 
TPtr ̂  .CurrQty;=TPtr ̂  .CurrQty-1.0; 
if TPtr ̂  .CurrQty then TPtr .Sn^tatus: =IDLE; 

iset min time here } 
((MData.Number>0.0) and ((MData.Number < TPtr ̂  .MinTime) or 

(TPtr ̂  .MinTime=0.0))) then TPtr ̂  .MinTime:=MData.Number; 
{ set max time here } 
u MData.NumberTPtr ̂  .MaxTime then TPtr ̂  .MaxTime: = MData.Number; 
{ set mean time here } 
TPtr ̂  .MeanTime: = ((TPtr ̂  .MeanTime*TPtr .TotalQty) + 

MData.Niunber)/(TPtr .TotalQty+1.0); 
CurrObj:=TPtr; PutObjlnBuffer; ShowObject; 

Figure 3-43. ENTITY LEAVE SQ method in server/queue class 

4. Scheduling completions 

Figure 3-44 shows the method invoked when the routing object receives the 

SCH_SQ_COMP message. Data are contained in the routing object for the current 

entity that indicate the distribution to use to determine the end of service time for 

an entity in a particular service. Entities in queues have no set completion time and 

will proceed to the next routed location as soon as possible. 

The software created in this research supports Uniform, Normal, and 

Exponential distributions for service time. After the routing object has determined 

the completion time for an entity, a SQ COMPLETE message is sent to the 

server/queue object with the clock field set to the completion time. This message 

will not be invoked until the simulation clock reaches the designated time. The 

result is that the entity will remain in the service or queue until the desired 

simulation time is reached. Failure percentages are examined in the 
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rocedure ScheduIeSrvQueCompletion; 
schedule service/queue completion } 

var 
ATime: real; 

be^ 
{ find the route record for the desired entity instance & type } 
TPtn=PointTo(MData.ToInst,MData JJumber); 
if TPtr=nil then Ent; 
CurrOW:=TPtr; 
FutObjInBufFer; 
ShowObject; 
{ generate the completion time (offset by simulation clock) } 
ATime:=GetDistNumber(TTtr ̂  .Dist,TPtr .MeanjITtr .Std) + SimClock; 
if GetDistNumber('UNHlM'^0.0,50.0) < TPtr ^ .FailPerc then 

{ set entity for service failure } 
SendMsg(ROUnNG,NINST,ENTITY,MData.FromInst, 

ENTITY_SET FAIL,O.OATime); 
{ send message to schedule sendee/queue completion } 
SendMsg(ROU'nNG,MData.FromInst,SERVQUE,TFtr ̂  .CurrLoc, 

SQ_COMFLETE,0.0,ATime); 
end; 

Figure 3-44. SCH_SQ_COMP method in routing class 

frocedure SetFail(Fail:boolean); 
set entity fail service flag } 

be^ 
TFtr:=FointTo(MData.ToInst); 
if TFtr=nil then Exit; 
{ update entity statistics here } 
TFtr ".WillFail:=Fail; 
CurrObj: =TFtr; 
FutObjInBuffer; 
ShowObject; 

Figure 3-45. ENTTTY SET FAIL method in entity class 

SCH_SQ_COMP method. If the entity is to fail the EN 111 V_SET_F AIL message 

is sent to the entity to set the failure flag. This information is used in the routing 

request methods described earlier. Figure 3-45 shows the method invoked in the 

entity class upon receipt of the ENTITY SET FAIL message. 
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procedure SrvQueCompletion; 
{ service/queue completion } 
be^ 

TPtr:=PomtTo(MData.ToInst); 
if TPtr=nil tiien Exit; 
CurrObj:=TPtr; 
PutObjInBufFer; 
ShowObject; 
{ send message to indicate completion and next route is required } 
SendMsg(SERVQUE,TPtr ̂  .Instance,ENTITY,MData.FromInst, 

ENTITY_SQ_COMP,0.0,SimClock); 
end; 

Figure 3-46. SQ_COMPLETE method in server/queue class 

Procedure ServQueComplete; 
service/queue completed, need next route } 

begin 
TPtr:=PointTo(MData.ToInst); 
if TPtr=nil then Exit; 
CurrObj:=TPtr; 
PutObjinBuffer; 
ShowObject; 
if TPtr ̂  .WillFail then begin { entity was destined to fail service } 

SendMsg(ENTITY,TPtr ̂  .Instance,ROUTING,TPtr .CurrLoc, 
GET_FAIL_RTE,TPTr ̂  ,TypeCode,SimClock); 

end 
else begin { send return message requesting next route } 
SendMsg(ENTlTY,TPtr ̂  .Instance,ROUTING.TPtr ̂  .CurrLoc, 

GET_NEXT_RTE,TPtr .TypeCode,SimClock); 
end; 

end; 

Figure 3-47. EN l l l Y_SQ_COMP method in entity class 

5. Completing service 

Figure 3-46 shows the method invoked when the server/queue object receives 

the SQ_COMPLETE message. Data contained in the server/queue object are 

modified and a message is sent to the entity object indicating completion of service. 

Figure 3-47 shows the method invoked when the entity object receives the 

ENTITY SQ COMP message. 
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When the ENTITY_SQ_COMP message is sent to the entity object, the 

entity initiates a request for the next routing location with either the 

GET NEXT RTE message or the GET_FAIL_RTE message depending on the 

status of the failure flag. With the invocation of the request for next routing 

location, the simulation has completed a cycle. 

6. Leaving the system 

If the next route for an entity is blank in the routing object, the entity will be 

instructed to leave the system with the LEAVE SYS message from the routing 

object. Figure 3-48 shows the method invoked when the entity object receives the 

LEAVE SYS message. The entity object again uses the ENTITY LEAVE SQ 

message described earlier to inform the server/queue object that an entity is leaving 

the current location. In addition, the entity object issues the ENTITY_DEP 

message to the simulation object to force simulation statistics collection. Figure 

3-49 shows the method invoked when the simulation object receives the 

ENTITY DEP message. Note that there are no messages generated by the 

ENTTTY DEP method in the simulation class. 

This chapter presented the structure of the simulation program. Through the 

use of object-oriented programming the simulation system was constructed with only 

4000 lines of Pascal code. The entire system, capable of a wide range of 

discrete-event simulations, operates with only 30 different messages passed between 

objects. 

The next step in the use of the simulation program is the actual execution of 

the software. The next chapter provides operational details of the simulation 

software. 
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frocedure LeaveSystem; 
entity leaves simulation } 

be^ 
TPtr:=PointTo(MData.ToInst); 
if ITtr=nil then Ent; 
{ send message to prior location that entity is leaving } 
SendMsg(ENTITY,TPtr .Instance,SERvQUE,TPtr .CurrLoc, 

ENnTY_LEAVE_SQ,SimClock-TPtr ̂  .StartTime,SimCIock); 
{ update entity statisticThere } 
TPtr ̂  .CurrLoc:=NINST; 
TPtr ̂  .TimelnSys:=SimClock-TPtr ̂  .CreateTime; 
CurrOW:=TPtr; 
PutObjlnBuffer; 
ShowObject; 
{ send message indicating entity throughput} 
SendMsg(ENTITY,TPtr ̂  .Instance,SIMULATE,NINST, 

ENTITY_DEP,TPtr ̂  .TimelnSys,SimCIock); 
{ delete the entity, no longer needed } 
u DeleteCurrObject then; 

end; 

Figure 3-48. LEAVE_SYS method in entity class 

procedure EntityDeparted; 
{ an entity has left the system } 
begin 

{ set throughput} 
CurrObj ̂  .CurrQty. = CurrObj ̂  .CurrQty+1.0; 
{ set min time in system } 
u ((MData.Number >0.0) and ((MData.Number > CurrObj .MinTInSys) or 

(CurrObj ̂  .MinTInSys=0.0))) then 
CurrObj ̂  .MinTInSys; = MData.Number; 

iset max time in system } 
MData.NumberCurrODj .MaxTInSys then CurrObj ̂  .MaxTInSys: = MData.Number; 

{ set avg time in system } 
CurrObj AvgTInSys: = ((CurrObj ̂  AvgTInSys* (CurrObj ̂  .CurrQty-1.0)) + 

MData.Number)/CurrObj ̂  .CurrQty; 
PutObjlnBuffer; 
ShowObject; 

end; 

Figure 3-49. ENTTTY DEP method in simulation class 
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IV. SIMULATION PROGRAM OPERATION 

A. Introduction 

The previous chapter described the internal operation of the object-oriented 

simulation program developed in this research. This chapter provides information to 

assist the user in the operation of the actual program. 

Requirements of the program and procedures to start the program are 

outlined first. Program menus are then described, followed by a presentation of 

data entry methods. Commands used to load and save simulation data are given. 

The balance of the chapter is devoted to techniques of running simulations using the 

simulation program. 

B. Starting the Program 

The program is written in Turbo Pascal version 5.0 and is designed to operate 

on standard MS-DOS microcomputers. The program requires the host machine to 

have at least 320K of random access memory (RAM). In addition, the host machine 

must have at least one floppy disk drive. A fixed disk is recommended for optimal 

program operation. The program has been compiled to a standard executable 

".EXE" file and does not require any additional interpreters to operate. 

The name of the simulation program file is "SOOP.EXE." Several support 

files with filename extensions of ".DBD", ".COl", ".C02", ".C03", and ".C04" are 

located on the distribution disk. The "SOOP.EXE" file and all support files must be 

present for correct operation of the program. The user should transfer all files 

found on the distribution disk to a subdirectory on a hard disk or to a separate floppy 

disk before attempting to execute the program. 
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After the correct files have been transferred to the desired location the user 

may start the simulation program by entering the "SOOP" command from the DOS 

command line. A brief delay will occur while the program is loaded into computer 

memory and all initialization is completed. The main program screen will then 

appear. 

The top line of the screen shows the name of the program, the current 

message queue count, and the name of the simulation currently in memory. The 

current simulation name will initially be blank. The center portion of the screen 

displays one of the four class screens. The classes are "SIMULATION CLASS", 

"ENTITY CLASS", "ROUTING CLASS", and "SERVER/QUEUE CLASS." Each 

of these classes contains different information which is displayed to the user. Only 

one class type is displayed at one time. 

The user may change the currently displayed class by pressing the PgUp or 

PgDn keys. Each keypress moves to the next or previous class. The display of object 

classes is a circular linked list so repeated PgUp or PgDn keystrokes will rotate 

through the classes. 

Only one instance of an object will appear on the screen at one time. 

Initially, there will be no instances of any of the objects. After the user loads a 

simulation fi-om disk or enters data manually, there will be some instances of some 

of the objects. The user may view different instances of an object by pressing the F5 

or F6 function keys. The F5 key will display the previous instance of an object and 

the F6 key will display the next instance of an object. The order of instances of 

objects depends on their order of creation. Using the keystrokes described above, 

the user can quickly move from class to class and from object to object. 
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The bottom portion of the screen displays the program menus. The use of 

the program menus is described in the next section. 

C. Program Menus 

Most of the program functions are executed through the list of commands 

shown on the bottom portion of the screen. The "space", "backspace", "left arrow", or 

"right arrow" keys may be used to highlight the desired command. A single line of 

text describing the highlighted command will be shown on the last line of the screen. 

To execute any of the program commands, the user may either highlight the desired 

command and press the "enter" key or press the first letter of the desired command. 

Some of the menus shown on the bottom of the screen will not allow 

movement of a highlight bar. These command lists are distinguished by the absence 

of a highlight bar on any one command. The user may select a command from this 

type of menu by pressing the indicated letter or function key. 

The selection of some commands will display another command list. The 

user may move to a previous command list by pressing the "esc" key. Each command 

list also has a "quit" command which will also serve to move to the previous 

command list. 

Occasionally the user will be presented with a vertical list of choices for some 

of the program options. Selections from these lists are made by pressing the "up 

arrow" or "down arrow" keys to highlight the desired option followed by pressing the 

"return" key. 

To quit the program and return to the DOS prompt the "quit" command 

found on the main program menu is selected. Alternately, the "esc" key may be used 

to quit from the program. 
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D. Object Definition 

To correctly configure the program for simulations the user must define the 

objects for the desired simulation. There are four classes in this simulation program. 

The user must enter data in the "simulation", "routing", and "server/queue" classes. 

The "entity" class does not allow the user to enter data or create instances of an 

entity object. 

1. Data entry basics 

The "Enter" command is used to enter new object instances to the program. 

The "Update" command is used to update existing object instances. The user should 

make sure the desired object is shown on the screen before using the "Enter" or 

"Update" commands. 

When entering data or updating data screens a flashing will appear on the 

data screen to indicate where information is to be entered. A cursor will also show 

the current position within a data field. Data fields are the highlighted areas in the 

center portion of the screen. Only some of the data fields may be edited by the user. 

The program automatically restricts data entry to allowable fields. The following 

commands are available for data entry: 

• [left or right arrow]: Moves the cursor within the current field. If the cur
sor is at the first position within a field then the previous field will be 
selected. If the cursor is at the last position witWn a field then the next 
field will be selected. 

• [ctrl-left or ctrl-right]: Moves the cursor to the first position or to the last 
character of a field. 

• [up or down arrow]: Selects the previous or next data field for editing. 

• [Enter]; Same as right arrow for selecting the next field. 

• [F5]: Accepts changes made to the data screen and displays the previous 
object instance. This command is only available in update mode. 
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• [F6]: Accepts changes made to the data screen and displays the next ob
ject instance. If in enter mode, the new data screen will be void of data. 

• [F8]: Blanks the current data Geld. 

• [Esc]: Aborts changes made to the data screen and completes the 
enter/update action. 

• [FIO]: Accepts changes made to the data screen and completes the 
enter/update action. 

Data are required in all but the entity class of objects. The following sections 

describe the data screens for each of the object classes. 

2. Simulation class 

Simulation class data are used to restrict the total run time for a simulation 

and to track general simulation statistics. Only one instance of a simulation class 

object is used to define a simulation for the program. Additional simulation object 

instances that are entered will be ignored by the program. The following data fields 

are available in simulation objects. 

• Simulation Instance: This field contains a short name for the simulation 
instance. 

• Description: This field is used to describe the simulation instance. 

• Maximum Time: This field contains the maximum time that the simula
tion is allowed to run measured in simulation time, not real time. When 
the simulation clock reaches this time the simulation will automatically 
stop. 

• Current Time: This field shows the current value of the simulation clock. 
The user may not modify this field. 

• Current Throughput: This field shows the total number of entities that 
have been processed through the system. This number includes all en
tities that have left the system regardless of the exit route. The user may 
not modify this field. 
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• Time In System (Min, Max, Avg): This field shows the minimum, maxi
mum, and average times that entities spend in the system. The user may 
not modify these fields. 

3. Entity class 

The entity class contains instances of the entities that flow through the 

simulation. Entities are automatically created and deleted by the software as 

required by the simulation and as specified by the user. The user may not manually 

create entities, but the user may view any currently existing entities. The following 

data fields are found in the entity class. 

• Entity Instance: This field contains a short name for the entity instance, 

• Entity Type Code: This field contains a number used to identify the 
general tj^e of entity. The software allows multiple types of entities to be 
simulated. The entity types are classified in the routing class described 
later. 

• Current Location: This field indicates in which server/queue object in
stance the entity currently resides. 

• Will Service Fail?: This field is used to predetermine entity failures in a 
server/queue object instance. Failures are set by percentages in the rout
ing class described later. 

• Entity Creation Time: This field marks the simulation time at which the 
entity was created. 

• Time Started Curr Loc: This field marks the simulation time at which the 
entity entered the current server/queue object instance. 

• Total Time In System: This field indicates the total time the entity spent 
in the simulated system. 

4. Server/queue class 

The server/queue class contains an entry for each server and queue in the 

defined simulation. Any point in a simulation where statistics are desired or where 
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an entity is to spend some time must be defined as a server or queue object. The 

user is responsible for the correct definition of servers and queues for the desired 

simulation. The examples shown in the next chapter may serve as guidelines for the 

definition of servers and queues. The following data fields are available in the 

server/queue class. 

• Server/Queue Instance: This field contains a short name for the serv
er/queue object instance. 

• Description: This field is used to describe the server/queue instance. 

• Server/Queue Cap: This field is used to limit the total capacity for the 
server/queue instance. This field is normally set to 1 for servers but may 
be set higher if more than one identical server is available. This field 
should be set to a very large number if there is no limit on capacity. 

• Current Quantity: This field shows the current number of entities in the 
server/queue. The user may not modify this field. 

• Maximum Quantity: This field shows the largest number of entities con
tained in the server/queue during the current simulation. The user may 
not modify this field. 

• Average Quantity: This field shows the average number of entities con
tained in the server/queue during the current simulation. The user may 
not modify this field. 

• Total Throughput: This field shows the total number of entities 
processed through the server/queue during the current simulation. The 
user may not modify this field. 

• Percent Utilization: This field shows the utilization of the server/queue 
during the current simulation. The user may not modify this field. 

• Status: This field shows the current status of the server/queue. If the cur
rent quantity in the server/queue is less than the capacity, the status will 
show the "idle" indicator. If the current quantity in the server/queue is at 
capacity, the status will show the "busy" indicator. The user may not 
modify this field. 

• TBA (Minimum, Maximum, Mean): These fields show the minimum, 
maximum, and mean time between arrivals at the server/queue. The user 
may not modify these fields. 
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• Time Spent Here (Minimum, Maximum, Mean): These fields show the 
minimum, maximum, and mean time that entities have spent in this serv
er/queue. The user may not modify these fields. 

• Last Time Arrival Occurred: This field shows the last simulation time 
that an entity arrived at this server/queue. The user may not modify this 
field. 

5. Routing class 

After the user has defined the servers and queues contained in the desired 

simulation, the relationships between servers and queues must be defined. The 

routing objects are used to define the paths that entities will take through the 

simulated ^stem. Routing objects are also used to define the amount of time 

(process time) that entities will spend at each server object. The user may modify 

any of the fields in the routing class. The following data fields are available in the 

routing class. 

• Routing Instance: This field contains a short name for the routing in
stance. 

• Desc: This field is used to describe the routing instance. 

• Ent Type: This field is used to designate the type of entity to which this 
routing instance applies. 

• Current Location: This field contains the server/queue instance name 
which is described by the routing object instance. For initial creation of 
entities, this field should be left blank. 

• Stay At Current Location (Distribution, Mean, Range or Std Dev): These 
fields are used to describe the amount of time that an entity should 
remain in the server/queue named in the "Current Location" field. The 
distribution may be "UNFRM" for the uniform distribution, "EXPON" for 
the exponential distribution, or "NORML" for the normal distribution. 
The mean and range must be specified for the uniform distribution. The 
mean must be specified for the exponential distribution. The mean and 
standard deviation must be specified for the normal distribution. 
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• Failure Percent: This field is used to specify the percentage of entities 
that will fail the service named in the "Current Location" field. This field 
is useful to create a routing split between two alternate paths. Several 
routing instances with failure percentages may be linked together to pro
vide multiple split options. 

• Failures Go To: This field is used to designate the next server/queue for 
an entity that fails the current server/queue. 

• Successes Go To: This field is used to designate the next server/queue for 
an entity that succeeds the current server/queue. If the entity is to leave 
the system after the current server/queue, this field should be left blank. 

• Balks Go To: This field is used to designate the next location for an entity 
that is not allowed to enter the "Successes Go To" server/queue because 
the next location is at capacity. If balking is not allowed, this field should 
be left blank. Blocked entities would then retry the server/queue 
specified in the "Successes Go To" field until entry is allowed. 

Proper definition of the objects is essential to the correct operation of the 

simulation. If the user finds that the results of a simulation do not appear correct, 

the data in the object instances should be examined. 

E. Loading and Saving the Simulation 

The objects in the simulation program contain a large amount of data. 

Complex simulations may be comprised of many object instances. Specification of a 

simulation is time-consuming and if possible should not be repeated. 

The software created in this research allows the user to save simulation 

specifications to a disk file to avoid repeating the data entry task. Simulations saved 

to disk may later be loaded to rerun the simulation. Completed simulations may be 

saved to disk to retain final or intermediate results for later review. 

To save a simulation to disk, the user should select the "Save" command from 

the program command list. The user will be prompted for a file name to save the 
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simulation. The file name may be up to 8 characters. After the file name is entered 

the simulation will be saved to disk. If a simulation with the same name already 

exists on disk, the user will be asked if the existing simulation should be replaced. 

To load an existing simulation from disk the user should select the "Load" 

command firom the program command list. The user will be asked if the current 

simulation should be cleared. The user will then be prompted for the name of the 

simulation to load from disk. If the file name specified by the user exists, the 

simulation will be loaded into memory and will be prepared for execution. If the file 

name specified by the user does not exist, a new simulation will be created in 

memory. 

F. Running the Simulation 

After the user has specified the desired simulation or loaded an existing 

simulation specification from disk the simulation program will be prepared to 

execute the simulation. The following guidelines provide information to assist the 

user when running a simulation. 

1. Starting the simulation 

The "Proceed" command is used to start the simulation. The user should 

ensure that the simulation has been completely defined before starting the 

simulation. After the simulation has been started, the current message count 

indicator will show the number of messages in the message queue as the simulation 

proceeds. The command list will also change to show a "Pause" command instead of 

the "Proceed" command. 

The object instance that is shown on the screen when the simulation is started 

will remain visible to the user during the simulation if single-step execution is not 
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enabled. The data contained in the current object instance will change as the 

simulation progresses. These data are shown to the user as they change. 

2. Interrupting the simulation 

At many times during the execution of a simulation the user may wish to stop 

the simulation to examine or modify object instances. The "Pause" command is used 

to interrupt the execution of a simulation. When the "Pause" command is selected, 

the simulation will stop and the command list will change to show the "Proceed" 

command instead of the "Pause" command. 

Although other commands found on the command list may be used while a 

simulation is in progress, only the "Pause" command should be used. If other 

commands are used during simulation execution, the data in object instances may be 

in an undefined state and will not be reliable. 

3. Changing the simulation 

Data in object instances may be changed while the simulation is interrupted. 

Care should be used when altering instance data after a simulation has been started. 

Modification is accomplished with the "Update" command. New instances of an 

object may be added to the simulation with the "Enter" command. Changes to the 

structure of the simulation during execution is often enlightening when testing the 

effect of changes on the operation of a system. 

4. Viewing alternate classes and objects 

Under normal circumstances only a single class and object instance will be 

shown to the user during simulation execution. It is often desirable to examine other 

classes and object instances during a simulation. Selecting an alternate class or 

instance of an object can be performed in either the paused or active execution 

states. 
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The user may select an alternate class for display by pressing the "PgUp" or 

"PgDn" keys until the desired class is shown on the screen. Alternate instances of an 

object may be displayed by pressing the "F5" or "F6" function keys until the desired 

object instance is shown on the screen. 

If alternate classes or object instances are selected while the simulation is in 

progress a slight delay may occur while messages with high priority are processed. 

Optimally, the simulation should be interrupted when changing to alternate classes 

or object instances. 

5. Restarting the simulation 

After the simulation has been interrupted with the "Pause" command it may 

be restarted with the "Proceed" command. Use of the "Proceed" command in this 

fashion will restart the simulation at the point it was interrupted. 

If the user desires to restart the simulation from time zero, the "Clr" 

command should be used before the "Proceed" command. The "Clr" command 

clears all data from the object instances. An alternate method to restart a simulation 

from time zero is to use the "Load" command to load the same simulation from disk. 

6. Single-step operation 

Under the default simulation program parameters only the class and object 

instance displayed when the simulation is started will be shown to the user during 

program execution. To fully understand the object-oriented nature of the simulation 

program developed in this research it is helpful to see the messages and results of 

the messages as they are sent and received in the software. Viewing messages in this 

fashion is called "single-stepping". 

Single-step execution of the simulation program is enabled or disabled with 

the "Options" command. When the "Options" command is selected from the 
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command list a vertical list of program options will appear. The user should use the 

"up arrow" or "down arrow to highlight the "Single-step" option and then press 

"return" to toggle single-step execution on or off. 

After single-step execution has been enabled, each message sent from one 

object to another object will be shown at the bottom of the screen. When the 

message is received by the target object, the message will again be shown at the 

bottom of the screen. In addition, the target object instance will be shown to the 

user. 

The use of single-step execution allows insight to the flow of messages in the 

object-oriented simulation software. Single-step execution drastically slows the 

execution of the program and should be avoided unless specifically desired. 

7. Printing reports 

Printed output from a simulation is obtained with the "Report" command. 

The simulation should be interrupted when the "Report" command is selected. The 

"Report" command sends a message to each of the object instances asking for a 

complete report of their contents. Each object will print a summary of its current 

instance variables when it receives the report request. 
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V. DATA COLLECTION AND ANALYSIS 

A. Introduction 

The major effort of this research is contained in the development of the 

object-oriented simulation program. However, a degree of research analysis is still 

required. There are two phases in the analysis portion of this research. First, the 

output produced by the proposed program is compared to the output produced by a 

traditional simulation language to verify the correctness of the object-oriented 

simulation program. Second, the operating characteristics of the simulation 

program will be compared to those of a traditional simulation language. 

Three simulation models are presented for verification followed by a 

complicated simulation. Object-oriented simulation is then compared to traditional 

simulation. 

B. Simulation Verification 

Simulation software is complicated and difficult to create. The 

object-oriented simulation program developed in this research contains over 4000 

lines of Pascal source code. While it is possible to examine the output of the 

simulation program for reasonableness, a more thorough method of program 

verification is to compare the output produced by this software with the output 

produced by established simulation language. 

The simulation language used for comparison purposes is SLAM from 

Pritsker and Associates. SLAM is used because of its popularity, availability on 

microcomputers, and its reputation as a correctly functioning simulation program. 

SLAM's process-orientation allows direct comparison with the object-oriented 

simulation program developed in this research. 
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The object-oriented simulation program is not intended to be a complete 

simulation package but rather, to serve as a demonstration of the possibilities of 

object-oriented programming for simulation in a procedural language. The 

simulation program is capable of simulating systems with multiple servers and 

queues. Arrival and service distributions may be selected from the uniform, 

exponential, and normal family of distributions. Resource usage is not supported in 

the simulation program. 

Four simulation models are used to test the object-oriented simulation 

program. The first three models are relatively simple and are designed to test the 

basic correctness of the program. The fourth model is a complex combination of 

simpler models and is used to demonstrate the advantages and capabilities of the 

object-oriented simulation program. Statistics collected from both simulation 

programs are presented for comparison. 

1. Single-server model 

Figure 5-1 shows the first simulation model used for verification. In this 

system entities arrive exponentially with a mean of 0.4 time units. The service is also 

exponentially distributed with a mean of 0.25 time units. Only four entities may wait 

in the queue. If the queue is full when an entity arrives, the entity will be sent to a 

subcontractor. The simulation is to be run for 300 time units. Figure 5-2 shows the 

data the user would enter in the objects of the object-oriented simulation program. 

The SLAM model for the single-server system is shown in Figure 5-3. The 

system was simulated using both SLAM and the object-oriented simulation program. 

A comparison of results fi^om the simulations is shown in Table 5-1. As shown, the 

results are similar under both simulation programs. 
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igure 5-1. Single-server queueing system 

O O O O  
Queue 1 

to subcontract 

Server 1 

Simulation: TESTl Description: Single Server Queue 

Routing: R1 Desc: Entity Creation 
— - • —TON Mean: 0.40 1 

Successes Go To: Q1 
Desc: Enter Service 1 Ent T^pe: 1.0 

Mean: 0.00 Range or Std Dev: 0.00 
Successes Go To: SI 

Desc: Finish Service 1 

Failures Go To: 
Routing: R2 

Distribution: 
Failures Go To: 

Routing: R3 

Server/Queue: 01 
Server/Queue: SI 
Server/Queue: SUBC 

Failures Go To: 
Routing: R4 

Distribution: 
Failures Go To: 

Successes Go To: 
Desc: Finish Subcontract Ent l^pe: 1.0 

Mean: 0.00 Range or Std Dev: 0.00 
Successes Go To: 

Description: Oueue Number 1 
Description: Service Number 1 
Description; Subcontracted Parts 

Ent l^ype: 1.0 Current Location: 
Failure Percent: 0.00 
Ballts Go To; SUBC 
Current Location: Q1 
Failure Percent; 0.00 
Balks Go To: 

Ent l^e: 1.0 Current Location: SI 
Failure Percent: 0.00 
Balks Go To: 
Current Location: SUBC 
Failure Percent: 0.00 
Balks Go To: 

Server/Queue Cap; 4.00 
Server/Queue Cap; 1.00 
Server/Queue Cap; 1.00 

Maximum Time: 300.00 

Figure 5-2. Object data for single-server model 

GEN,DIESCH,SERIAL SINGLE SERVER,1/24/89,1; 
LIMITS,2,2,50; 
NETWORK; 

CREATE,EXP0N(.4)„1; CREATE ARRIVALS 
QUEUE(1),0,4,BALK(SUB); STATION 1 QUEUE 
ACT/l,EXPON(.25); STATION 1 SERVER TIME 
COLCT,INT(l),TIME IN SYSTEM,20/0/.25; COLLECT STATISTICS 
TERM; 

SUB COLCT,BET,TIME BET. BALKS; COLLECT STATISTICS 
TERM; 
END 

INIT,0,300; 
HN; 

Figure 5-3. SLAM statements for single-server model 
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Table 5-1. Simulation results for single-server model 

SLAM SOOP 

Maximum length of queue 1 4.00 4.00 
Average wait time in queue 1 0.34 0.36 
Total throughput of server 1 700 710 
Total units to subcontract 42 45 
Mean time between balks 6.28 6.05 
Mean time in system 0.60 0.57 

- o o o o —  
Queue 1 

fc. to subcontract 

—  O O -
Server 1 Queue 2 Server 2 

Figure 5-4. Maintenance facility model 

2. Maintenance facility model 

There are two operations performed on the entities in the maintenance 

facility shown in Figure 5-4. These operations are performed in series. Operation 2 

always follows operation 1. The queue before work station 1 allows room for four 

units and there is space for two units in the queue preceding work station 2. If an 

arriving unit cannot enter the first queue it is sent to a subcontractor. 

The interarrivai time for units entering the maintenance facility is 

exponentially distributed with a mean of 0.4 time units. Service times are also 

exponentially distributed with a mean of 0.25 time units for work station 1 and a 

mean of 0.5 time units for work station 2. Transport time be tween work stations is 
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Simulation: TEST2 Description: Maintenance Facility Maximum Time: 300.00 

Routing: R1 Desc: 
Distribution: EXPON 
Failures Go To: 

Routing: R2 Desc: 
Distribution: 
Failures Go To: 

Routing: R3 Desc: 
Distribution: EXPON 
Failures Go To: 

Routing: R4 Desc: 
Distribution: 
Failures Go To: 

Routing: R5 Desc: 
Distribution: EXPON 
Failures Go To: 

Routing: R6 Desc: 
Distribution: 
Failures Go To: 

Entity Creation Ent l^pe: 1.0 
Mean: 0.40 Range or Std Dev: 0.00 

Successes Go To: Q1 
Enter Service 1 Ent l^pe: 1.0 

Mean: 0.00 Range or Std Dev: 0.00 
Successes Go To: SI 

Finish Service 1 Ent Type; 1.0 
Mean: 0.25 Range or Std Dev: 0.00 

Successes Go To: Q2 
Enter Service 2 Ent l^pe: 1.0 

Mean: 0.00 Range or Std Dev: 0.00 
Successes Go To: S2 

Finish Service 2 Ent T^re: 1.0 
Mean: 0.50 Range or Std Dev: 0.00 

Successes Go To: 
Innish Subcontract Ent T^ype: 1.0 

Mean: 0.00 Range or Std Dev: 0.00 
Successes Go To: 

Current Location: 
Failure Percent: 0.00 
Balks Go To: SUBC 
Current Location: Q1 
Failure Percent: 0.00 
Ballts Go To: 
Current Location: SI 
Failure Percent: 0.00 
Balks Go To: 
Current Location: Q2 
Failure Percent: 0.00 
Balks Go To: 
Current Location: S2 
Failure Percent: 0.00 
Balks Go To: 
Current Location: SUBC 
Failure Percent: 0.00 
Balks Go To: 

Server/Queue: Q1 Description: Queue Number 1 
Server/Queue: SI Description: Service Number 1 
Server/Queue: Q2 Description: Queue Number 2 
Server/Queue: S2 Description: Service Number 2 
Server/Queue: SUBC Description: Subcontracted Parts 

Server/Queue Cap: 4.00 
Server/Queue Cap: 1.00 
Server/Queue Cap: 2.00 
Server/Queue Cap: 1.00 
Server/Queue Cap: 1.00 

Figure 5-5. Object data for maintenance facility 

GEN,DIESCH,MAINTENANCE FACILITY,1/24/89,1: 
LIMITS,2,2,50; 
NETWORK; 

CREATE,EXPON(.4)„l; 
QUEUE(1),0,4,BALK(SUB); 

CREATE ARRIVALS CREATE,EXPON(.4)„l; 
QUEUE(1),0,4,BALK(SUB); STATION 1 QUEUE 
ACT/l,EXPON(.25); STATION 1 SERVER TIME 
QUEUE(2),0,2,BLOCK; STATION 2 QUEUE 
ACT/2,EXPON(.50); STATION 2 SERVER TIME 
COLCT,INT(l),TIME IN SYSTEM,20/0/.25; COLLECT STATISTICS 
TERM; 

SUB COLCT,BET,TIME BET. BALKS; COLLECT STATISTICS 
TERM; 
END 

INIT,0,300; 
FIN; 

Figure 5-6. SLAM statements for maintenance facility 
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Table 5-2. Simulation results for maintenance facility 

Maximum lenAh of queue 1 
Average length of queue 1 
Average wait time m queue 1 
Maximum length of queue 2 
Average length of queue 2 
Average wait time m queue 2 
Total throughput of server 1 
Total throughput of server 2 
Total units to subcontract 
Mean time between balks 
Mean time in system 

SLAM SOOP 

4.00 4.00 
1.99 2.60 
1.10 1.23 
2.00 2.00 
1.43 1.69 
0.79 0.76 
541 540 
538 537 
178 227 

1.65 1.30 
2.87 2.06 

negligible. If the queue for work station 2 is full, the first work station is blocked 

and units carmot leave that station. A blocked work station cannot serve other units 

until it is unblocked. 

The maintenance facility is to be simulated for 300 time units. Figure 5-5 

shows the data the user must enter in the objects. Figure 5-6 shows the SLAM 

statements required to simulate the maintenance facility. Table 5-2 shows the 

results of the simulation using both SLAM and the object-oriented simulation 

program. As shown, the results are similar. 

3. TV inspection and adjustment model 

In the system shown in Figure 5-7 assembled television sets move through a 

series of testing stations. A final test is performed at the last of these stations. If the 

sets fail the final test, the set is routed to an adjustment station where the set is 

adjusted. After adjustment, the television set is sent back to the last inspection 
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station where the set is again inspected. When the television set finally passes 

inspection it is routed to a packing area. There is no limit placed on the number of 

sets that may wait in any of the queues in the inspection system. 

The time between arrivals of television sets for inspection is uniformly 

distributed between 3.5 and 7.5 minutes. There are two identical inspectors at the 

inspection station. The time required to inspect a set is uniformly distributed 

between 6 and 12 minutes. On the average, 85 percent of the set pass inspection and 

are routed to the packing area. The remaining 15 percent fail inspection and are 

sent to the adjustment station. Adjustment requires between 20 and 40 minutes, 

uniformly distributed. 

The system is to be simulated for 480 minutes. Figure 5-8 shows the data the 

user must enter in the objects of the object-oriented simulation program. Figure 5-9 

shows the SLAM statements required to simulate the model. Table 5-3 presents the 

results of the simulations using SLAM and the object-oriented simulation program. 

As shown, the results obtained from both programs are similar. 

The three test simulations serve to verify the correct operation of the 

object-oriented simulation program. Under different conditions, the results 

Return of adjusted sets 

Adjust Queue 
(no limit) 

Arriving sets 
Inspector 

O O  
Adjuster 

Departure to packing 

Waiting sets (no limit) 
Inspector 

Figure 5-7. TV inspection and adjustment system 
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Simulation: TEST3 Description: TV Inspect & Adjust 

Routing: R1 Desc: Entity Creation Ent I^pe: 1.0 
Distribution: UNFRM Mean: 5.50 Range or Std Dev: 2.00 
Failures Go To: Successes Go To: INSPQ 

Routing: R2 Desc: Enter Inspection Stat. Ent 1^: 1.0 
Distribution: Mean: 0.00 Range or Std Dev: 0.00 
Failures Go To: Successes Go To: INS? 

Routing: R3 Desc: Get Inspected Ent T^: 1.0 
Distribution: UNFRM Mean: 9.00 Range or Std Dev: 3.00 
Failures Go To: ADJTQ Successes Go To: 

Routing: R4 Desc: Enter Adjustment Stat. Ent 1^: 1.0 
Distribution: Mean: 0.00 Range or Std Dev: 0.00 
Failures Go To: Successes Go To: ADJT 

Routing: R5 Desc: Get Adjusted Ent Type: 1.0 
Distribution: UNFRM Mean: 30.00 Range or Std Dev: 10.00 
Failures Go To: Successes Go To: INSPQ 

Maximum Time: 480.00 

Current Location: 
Failure Percent: 0.00 
Balks Go To: 
Current Location: INSPQ 
Failure Percent: 0.00 
Balks Go To: 
Current Location: INSP 
Failure Percent: 15.00 
Balks Go To: 
Current Location:ADJTQ 
Failure Percent: 0.00 
Balks Go To: 
Current Location: ADJT 
Failure Percent: 0.00 
Balks Go To: 

Server/Queue: INSPQ 
Server/Queue: INSP 
Server/Queue: ADJTQ 
Server/Queue: ADJT 

Description: Inspection Queue 
Description: Inspection 
Description: Adjustment Queue 
Description: Adjustment 

Server/Queue Cap: 999999.00 
Server/Queue Cap: 2.00 
Server/Queue Cap: 999999.00 
Server/Queue Cap: 1.00 

Figure 5-8. Object data for TV inspect & adjust model 

GEN,DIESCH,TV INSP. AND ADJUST.,1/24/89,1; 
LIMITS,2,2,50; 
NETWORK; 

CREATE,UNFRM(3.5,7.5)„1; 
INSP QUEUE(l); 

ACT(2)/1,UNFRM(6.,12.); 
GOON; 
ACT„.85,DPRT; 
ACT„.15,ADJT; 

ADJT QUEUE(2); 
ACT/2,UNFRM(20.,40.).,INSP; 

DPRT C0LCT,INT(1),TIME IN SYSTEM; 
TERM; 
END; 

INIT,0,480; 
FIN; 

CREATE TELEVISIONS 
INSPECTION QUEUE 
INSPECTION 

85% DEPART 
15% ARE RE ADJUSTED 
ADJUST QUEUE 
ADJUSTMENT 
COLLECT STATISTICS 

Figure 5-9. SLAM statements for TV inspection and adjustment 



www.manaraa.com

110 

Table 5-3. Simulation results for inspection and adjustment 

SLAM SOOP 

Total throughput of inspection 
Average contents of inspection station 
Average utilization of inspectors 
Average length of adjustment queue 
Total units to adjustment 
Total new arrivms 
Minimum time in system 
Maximum time in system 
Mean time in system 

140.00 
26.50 

101 
1.96 
0.98 
1.27 

15 
86 

6.18 
184.67 
29.06 

99 
1.98 
0.99 
1.29 

12 
85 

6.42 

obtained from SLAM and the object-oriented system are similar. The next section 

demonstrates the simulation of a more complex system and further verifies the 

integrity of the object-oriented simulation program. 

4. An advanced simulation model 

The previous simulation models served to verify that the object-oriented 

simulation program is capable of performing correct simulated analyses. The model 

described in this section shows that the object-oriented simulation program is 

capable of modeling more complex systems. 

One of the advantages of object-oriented programming is the modularity of 

program design. This modularity carries over into the use of the software. Complex 

simulations can be constructed through the combination of simpler models. The 

system shown in Figure 5-10 is a combination of the maintenance facility and the TV 

inspection and adjustment models. 

Note that the model of Figure 5-10 represents the attachment of the output 

from the maintenance facility to the input of two TV inspection and adjustment 
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to subcontract 

O O O O  
Queue 1 

Arrivals 

Assembly 1 Queue 2 Assembly 2 

Return of adjusted sets 

Adjust Queue 
(no limit) 

O O -
Adjuster 

Inspector Departure to packing 

Waiting sets (max 10) 
Inspector 

balk to subcontract 

Return of adjusted sets 

Adjust Queue 
(no iimit) 

O O -
Adjuster 

Inspector Departure to packing 

Waiting sets (max 10) 
Inspector 

balk to subcontract 

Figure 5-10. Complex TV inspection and adjustment system 
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Simulation: TEST4 Description: Combination Facility Maximum Time: 480.00 

Routing: R1 Desc: Entity Creation Ent Type: 1.0 Current Location: 
Distribution: EXPON Mean: 0.40 Range or Std Dev: 0.00 Faiiure Percent: 0.00 
Failures Go To: Successes Go To: Q1 Balles Go To: SUBC 

Routing: R2 Desc: Enter Service 1 Ent T^pe: 1.0 Current Location: Q1 
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00 
Failures Go To: Successes Go To: Q2 Balks Go To: 

Routing: R3 Desc: Finish Service 1 Ent l^pe: 1.0 Current Location: SI 
Distribution: EXPON Mean: 0.25 Range or Std Dev: 0.00 Failure Percent: 0.00 
Failures Go To: Successes Go To: Q2 Balks Go To: 

Routing: R4 Desc: Enter Serwce 2 Ent 1^: 1.0 Current Location:Q2 
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00 
Failures Go To: Successes Go To: S2 Balks Go To: 

Routing: R5 Desc: Finish Service 2 Ent Type: 1.0 Current Location: 82 
Distribution: EXPON Mean: 0.50 Range or Std Dev: 0.00 Failure Percent: 50.00 
Failures Go To: IQ2 Successes Go To: IQl Balks Go To: 

Routing: R6 Desc: Finish Subcontract Ent Type: 1.0 Current Location: SUBC 
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00 
Failures Go To: Successes Go To: Balks Go To: 

Routing: R7 Desc: Enter Inspection Ent Type: 1.0 Current Location: INSQl 
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00 
Failures Go To; Successes Go To: INSl Balks Go To: 

Routing: R8 Desc: Inspection Station 1 Ent Type: 10 Current Location: INSl 
Distribution: UNFRM Mean: 9.00 Range or Std Dev: 3.00 Failure Percent: 15.00 
Failures Go To: ADJQl Successes Go To: Balks Go To: 

Routing: R9 Desc: Enter Adjustl Queue Ent'I>pe:1.0 Current Location: ADJQl 
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00 

Routing: RIO Desc: Adjustment Station 1 Ent Type: 1.0 Current Location: ADJl 
Distribution: UNFRM Mean: 30.00 Range or Std Dev: 10.00 Failure Percent: 0.00 
Failures Go To: Successes Go To: INSQl Balks Go To: SUBIl 

Routing: Rll Desc: Subcontract Inspect. 1 Ent T^pe: 1.0 Current Location: SUBIl 
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00 
Failures Go To: Successes Go To: Balks Go To: 

Routing: R12 Desc: Enter Inspect Queue 1 Ent Type: 1.0 Current Location: INSQ2 
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00 
Failures Go To: Successes Go To: INS2 Balks Go To: 

Routing: R13 Desc: Inspection Station 2 Ent T^pe: 1.0 Current Location: INS2 
Distribution: UNFRM Mean: 9.00 Range or Std Dev: 3.00 Failure Percent: 15.00 
Failures Go To: ADJQ2 Successes Go To: Balks Go To: 

Routing: R14 Desc: Enter Adjust Queue 2 Ent TVpe: 1.0 Current Location: ADJQ2 
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00 
Failures Go To: Successes Go To: ADJ2 Balks Go To: 

Routing: R15 Desc: Adjustment Station 2 Ent Type: 1.0 Current Location:ADJ2 
Distribution: UNFRM Mean: 30.00 Range or Std Dev: 10.00 Failure Percent: 0.00 
Failures Go To: Successes Go To; INSQ2 Balks Go To: SUBI2 

Routing: R16 Desc: Subcontract Inspect 1 Ent Type: 1.0 Current Location; SUBI2 
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00 
Failures Go To; Successes Go To; Balks Go To: 

Routing: R6-1 Desc: Temporary Queue 1 Ent l^pe: 1.0 Current Location; IQl 
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00 
Failures Go To: Successes Go To: INSQl Balks Go To: SUBIl 

Routing: R6-2 Desc: Tenmorary Queue 2 Ent Type: 1.0 Current Location: IQ2 
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00 
Failures Go To: Successes Go To: INSQ2 Balks Go To: SUBI2 

Figure 5-11. Object data for advanced model, part 1 
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Server/Queue: 
Server/Queue: 
Server/Queue: 
Server/Queue: 
Server/Queue: 
Server/Queue: 
Server/Queue: 
Server/Queue: 
Server/Queue: 
Server/Queue: 
Server/Queue: 
Server/Queue: 
Server/Queue: 
Server/Queue: 
Server/Queue: 
Server/Queue: 
Server/Queue: 

Q1 
51 
Q2 
52 
SUBC 
INSQl 
INSl 
ADJQl 
ADJl 
SUBIl 
INSQ2 
INS2 
ADJQ2 
ADJ2 
SUBI2 
101 
IQ2 

Description: 
Description: 
Description: 
Description: 
Description: 
Description: 
Description: 
Description: 
Description: 
Description: 
Description: 
Description: 
Description: 
Description: 
Description: 
Description: 
Description: 

Queue Number 1 
Service Number 1 
Queue Number 2 
Service Number 2 
Subcontracted Parts 
Inspection Queue 1 
Inspection Station 1 
Adjust Queue 1 
Adjust Station 1 
Subcon^act Insp 1 
Inspection Queue 2 
Inspection Station 2 
Adjust Queue 2 
AcQust Station 2 
Subcontract Insp 2 
Temporary Queue 1 
Temporal Queue 2 

Server/Queue Cap: 
Server/Queue Cap: 
Server/Queue Cap; 
Server/Queue Cap: 
Server/Queue Cap: 
Server/Queue Cap: 
Server/Queue Cap: 
Server/Queue Cap: 
Server/Queue Cap: 
Server/Queue Cap: 
Server/Queue Cap: 
Server/Queue Cap: 
Server/Queue Cap: 
Server/Queue Cap: 
Server/Queue Cap: 
Server/Queue Cap; 
Server/Queue Cap; 

4.00 
1.00 
2.00 
1.00 
1.00 
10.00 
2.00 
999999.00 
1.00 
1.00 
10.00 
2.00 
999999.00 
1.00 
1.00 
999999.00 
999999.00 

Figure 5-12. Object data for advanced model, part 2 

facilities. Interarrivai times and service times remain the same. Subcontract outlets 

are added to the TV inspection queues and the queues have been limited to a 

capacity of 10 units. 

The entire system is simulated for 480 time units. The data required in the 

objects of the object-oriented simulation program are shown in Figures 5-11 and 

5-12. The SLAM statements required to simulate this system are shown in Figure 

5-13. Table 5-4 shows the results of the simulations performed with both SLAM and 

the object-oriented simulation program. As in the three previous simulation tests, 

the results are similar. 

In theory, there is no practical limit to the combinations that may be 

performed with the basic building blocks of the object-oriented simulation system. 

The example models serve to verify the correct operation of the object-oriented 

simulation program developed in this research. The next section presents a 

comparison between SLAM and the object-oriented approach to simulation taken in 

this research. 
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GEN,PRTTSKER,COMBINATION SYSTEM,1/24/89.1; 
LIMTrS,6,2,150; 
NETWORK; 

•SUBSYSTEM 1 
CREATE,EXP0N(.4)„1; CREATE ARRIVALS 
QUEUE(1),0,4,BALK(SUB1); STATION 1 QUEUE 
ACT/l,EXPON(.25); STATION 1 SERVER 
QUEUE(2),0,2,BLOCK; STATION 2 QUEUE 
ACT/2,EXPON(.50); STATION 2 SERVER 
GOON; 
ACT„0^,INS1; NOW GOTO INSPECTION 
ACT„0.5,INS2; 

•SUBSYSTEM 2 
INSl QUEUE(3),0,10,BALK(SUB2); INSPECTION QUEUE 

ACT(2)/3,UNFRM(6.,12.); INSPECTION 
GOON; 
ACT„.85,DPRT; 85% DEPART 
ACT„.15,ADJ1; 15% ARE RE ADJUSTED 

ADJl QUEUE(4); ADJUST QUEUE 
ACT/4,UNFRM(20.,40.)„INS1; ADJUSTMENT 

•SUBSYSTEM 3 
INS2 QUEUE(5),0,10,BALK(SUB3); INSPECTION QUEUE 

ACT(2)/5,UNFRM(6.,12.); INSPECTION 
GOON; 
ACT„.85,DPRT; 85% DEPART 
ACT„.15ADJ2; 15% ARE RE-ADJUSTED 

ADJ2 QUEUE(6); ADJUST QUEUE 
ACT/6,UNFRM(20.,40.)„INS2; ADJUSTMENT 

DPRT C0LCT,INT(1),TIME IN SYSTEM; COLLECT STATISTICS 
TERM; 

•STATISTICS COLLECTION ROUTINES 
SUBI COLCT,BET,TIME BET. BALKS I; COLLECT STATISTICS 

TERM; 
SUB2 COLCT,BET,TIME BET. BALKS 2; COLLECT STATISTICS 

TERM; 
SUB3 COLCT,BET,TIME BET. BALKS 3; COLLECT STATISTICS 

TERM; 
END 

INTT,0,480; 
FIN; 

Figure 5-13. SLAM statements for advanced model 
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Table 5-4. Simulation results for advanced model 

Total throughput 
Average lengtn of queue 1 
Average wait time m queue 1 
Average length of queue 2 
Average wait time m queue 2 
Throughput of assembly 1 
Throughput of assembly 2 
Subcontracted before assembly 1 
Average length of inspection queue 1 
Average wait time in inspection queue 1 
Average length of inspection queue 2 
Average wait time in inspection queue 2 
Throughput of inspection station 1 
Throughput of inspection station 2 
Average length of adjustment queue 1 
Average wait time in adjustment queue 1 
Average length of adjustment queue 2 
Average wait time in adjustment queue 2 
Throughput of adjustment station 1 
Throughput of adjustment station 2 
Subcontracted before inspection station 1 
Subcontracted before inspection station 2 

SLAM SOOP 

1080 1167 
1.93 2.69 
1.04 1.27 
1.37 1.37 
0.74 0.82 
888 878 
885 877 
225 324 
9.54 9.05 

38.18 34.15 
9.68 9.00 

40.41 35.84 
108 108 
103 108 
0.12 2.36 
5.86 25.44 
1.36 1.89 

43.49 44.93 
14 12 
15 12 

307 330 
362 337 

C. Object-oriented Versus Traditional Simulation 

The simulations of the example models indicate that the end results of 

traditional simulation are similar to the results obtained with the object-oriented 

simulation program developed in this research. Assuming the correct construction 

and operation of the object-oriented simulation program, comparative results are to 

be expected. Differences between the two methods are an important component of 

this research. This section presents a comparison of the two approaches to 

simulation. 
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One difference of note is the execution time of the two simulation programs. 

The execution times for the first three example simulations were relatively close. 

The execution time for the advanced simulation model with SLAM was 

approximately 5 minutes. The same model simulated with the object-oriented 

simulation program took approximately 40 minutes. Such a large discrepancy in 

execution times presents a problem if object-oriented simulation is to be used in 

practice. 

It is likely that the large execution time for object-oriented simulation with 

the software developed in this research is due to inefficiencies in the algorithms. 

Concentration in this research was on the correct operation of the software, not the 

efficient operation of the program. Careful construction of the program with less 

concentration on user displays would greatly enhance the operational speed of the 

program. The type of software development to achieve optimum performance is 

costly and beyond the scope of this research. 

While execution appears to be slower with the object-oriented software, the 

measure of program execution time was made under nonvarying simulation 

conditions. An advantage of the object-oriented simulation program is in the 

interruptable nature of the program. If the user desires to modify the conditions 

under which the simulation is performed, a simple command may be issued to 

interrupt the object-oriented simulation while it is in progress. Changes may then be 

made to the simulation characteristics and the simulation may be restarted. With 

SLAM, the user must wait for the completion of the current simulation, modify the 

SLAM statements, and rerun the simulation. Intermediate results would be more 

difficult to collect. The total execution time under these conditions could easily be 

higher than the time required for the object-oriented simulation. 
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An important advantage of object-oriented programming is the ease at which 

the underlying program can be enhanced to provide new capabilities. For example, 

to add a new distribution to the simulation program a short section of code is added 

to the routing class method that generates samples from probability distributions. 

The code is then ready to draw from the new distribution. Messages used internally 

by the software remain unchanged. The user need only modify the distribution 

specified in the routing class data entry screen to use the new simulation. 

The addition of a new type of probability distribution in SLAM would require 

the addition of code to sample from the desired distribution as well as the addition 

of code to correctly recognize the request for the new distribution in the SLAM 

statements presented to the SLAM input translation program. 

The differences between the two types of simulation software are most 

apparent at the source code level. Screen displays, report formats, statistics 

collection, and general simulation capabilities are more easily modified or extended 

under the modular construction found in object-oriented systems. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

Several potential benefits may be derived from this research. Through the 

use of object-oriented programming, simulation might be made applicable to a 

larger base of simulation users in business and industry. More efficient planning and 

better utilization of existing facilities would result in increased productivity. 

An object-oriented simulation language might also better serve as an 

educational tool for college level courses in simulation. With object-oriented 

simulation, students could concentrate on the science of simulation rather than the 

science of programming. The proliferation of simulation into the public sector 

would increase as more students are educated in this area. 

The primary goal of this research is to develop object-oriented extensions for 

simulation in a strongly-typed procedural language. This research provides a base 

from which future simulation languages may be built. The software industry is 

turning toward object-oriented programming environments for operating systems 

and many end-user programs. As multiprocessor, multitasking computers become 

readily available, the object-oriented approach taken in this research will provide an 

efficient vehicle for simulation program design. The inherent characteristics of the 

object-oriented programming paradigm fit well with the parallel process 

architecture that will be a part of the future of computing. 

The result of the research is an object-oriented simulation language that may 

be used in industry and classroom settings. At best, the simulation of a real-world 

system should be constructed using the same terminology, methods, and skills 

required to construct the real system. Most computer languages operate under the 

"data-procedure" paradigm. Procedures (distinct sections of computer code) act on 

data passed to them. Procedures must be prepared for every type of task required 
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by the resultant program. Object-oriented languages employ a data or 

"object-oriented" approach to programming. Instead of passing data to procedures, 

the data (objects) perform operations on themselves. 

Further, in object-oriented programming, the types of operations performed 

on data can be developed in an abstract way so that a separate procedure is not 

required for each operation. Instead, a "class" structure is used. A single class 

provides all the information necessary to construct and use objects of a particular 

kind (instances of a class). All operations on objects are carried out by passing 

"messages" to an instance of a class. Messages in an object-oriented language occur 

simultaneously and are automatically passed from class to class. 

The object-oriented approach allows straightforward simulation modeling by 

removing the simulation expert from the process. Little training in simulation 

methods is necessary because the expertise required is already available through the 

persons working with the real-world system. 

Computers and computer simulation will become more complex in the 

future. The advantages of object-oriented simulation will facilitate future simulation 

research. Future research in object-oriented simulation should concentrate on the 

optimization of methods used to implement the simulation functions. One area of 

concentration could be the intelligent selection of messages from the message queue 

when the queue contains messages of equal priority. Currently, the messages are 

scanned in turn until an action can be taken. Intelligent selection would allow only 

messages that are ready for execution to be retrieved from the message queue. 

Other code segments could be optimized with assembly language subroutines. 

Another area of future research is the investigation of object-oriented operating 

systems to serve as the basis for object-oriented simulation programs. 
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{ SOOP.PAS ) 

{$M 16384,16384,655360) { stacks i ze,heapmi n,heapmax ) 

program SOOP; 
{//////////////////////////////////////////////////////////// 
// // 
// Program: Simulation with Object Oriented Programming // 
// Version: 1.0 // 
// Revised: 1/89 // 
// // 
// Prepared by: Kurt H. Diesch // 
// // 
// Simulation with object-oriented programming (SOOP) // 
// // 
////////////////////////////////////////////////////////////) 

{$I COHPDIRS.PAS ) { compiler directives ) 

uses SOOPHSG; { message handling unit, the only unit aware of 
all classes! ) 

begin 
HessageHandler; { branch to Message Handler ) 

end. 

{COHPDIRS.PAS) 

($8+) { full boolean evaluation (always on) ) 
{SF+) { force far calls ) 
{$!-) { I/O Checking off ) 
{$R-) { range checking off ) 
{$S+) { Stack checking off ) 
{$V-) { Var-string checking (always off) ) 

{ SOOPDEFS.PAS ) 

{============= STANDARD DEFINITIONS 

byte = $01; { background color (Blue) ) 
byte = $13; C low color (Cyan on Blue) } 
byte = $1F; C norm color (White on Blue) ) 
byte = $31; { inverse color (Blue on Cyan) ) 
byte = $1E; { headline color (Yellow on Blue) ) 
byte = $4F; C error color (White on Red) ) 
byte = $3E; C headline color (Green on Blue) > 
boolean = FALSE; { computer beeper ) 

type 
HenuSet 
TimeStr 
DateStr 
Str12 
HexStr 

= Set of Byte; 
= string [61; 
= string [101; 
= string[12]; 
= string [21; 

LineArray = array [1..160] of byte; 

Command = record 
Line 
Desc 

end; 

{ menu strings > 
array [1..2] of string; 
array [1..25] of string[80]; 

W 

WindowPtr = "WindowArray; 
WindowArray= record { space for saving screens > 

Add: array [0..24,0..79] of word; 
ULX,ULY,LRX,LRY ; byte; 

end; 

const 

N0KEY=0; BACK=8; CR=13; ESC=27; SPACE=32; { keystrokes ) 
F1=187; F2=188; F3=189; F4=190; F5=191; F6=192; F7=193; 
F8=194; F9=195; F10=196; 
H0ME=199; ENDKEY=207; PGUP=201; PGDN=209; CTRLPGDN=246; 
UP=200; LEFT=203; RIGHT=205; DOUN=208; 
INSKEY=210; DELKEY=211; RTAB=9; LTAB=143; 
CTRLLEFT=243; CTRLRIGHT=244; CTRLEND=245; CTRLH0HE=247; 

PLF = #10; C print code mnemonics ) 
PCR = #13; 
PCRLF= #13#10; 
PFF = #13#12; 
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CBack = #255#0; 
CLow = #255#1; 
CNorm 

= #255#2; 
CInv = #255#3; 
CHead = #255#4; 
CError = #255#5; 
CHelp = #255#6; 

CursorOn ; word = 
CursorsIk : word = 
CursorOff ; word = 

EMPTYSET : MenuSet 
ALLCHAR ; MenuSet 
INTS MenuSet 
REALS : MenuSet 
WORDS MenuSet 
YESNO MenuSet 
YES MenuSet 
NO MenuSet 
HEXES MenuSet 
TIMESET MenuSet 
FILECHAR MenuSet 

activates 
activates 
activates 
activates 
activates 
activates 
activates 

background color ) 
low color } 
normal color > 
inverse color > 
headline color } 
error color } 
help line color > 

$0607; { default cursor > 
$0507; { default block cursor } 
$2020; { cursor off value } 

= 11; C the empty set > 
= [32..126]; ( all printable set > 
= [45,48..5n; { integer input set > 
= [45,46,48..57]; { real input set > 
= [48..57]; { integer input set > 
= [78,110,89,121]; { yes/no set > 
= [89,121]; { yes set > 
= [78,110]; { no set > 
= [48..57,65..70,97..102];{ hex set > 
= [48..57,65,80,97,112]; { time set J 

[33,35..41,45,48..57,64..90,96..123,125,126]; 

MENULINE = 22; C line to show menus } 
MSGLINE = 24; { line to show messages > 
HELPLINE = 25; { line to show help > 
MAXCOMLIST = 127; { maximum # of command lists > 

MinMem = $80; { minimum allowable memory > 

var 
ScreenAdr ; word; ( screen address } 
RetraceMode : boolean; { wait for retrace? > 
IsMono : boolean; { is this a mono monitor? > 
OrigTextAt : byte; { original text attribute > 
SavedExitProc: pointer; { old ExitProc value > 
0ldlnt24 : pointer; { old Int24 vector ) 
DosBreakState: boolean; ( Initial state of DOS break } 
CritError : word; ( critical error number } 
PASError : word; ( error number } 
AMSTError : word; { global error number > 
CurrentCursor: byte; { current cursor mode > 
CmdList : integer; { current command list } 
CmdNum : array [1. .MaxComlist] of byte; 

Commands 
CurrCommand 
VList 
AHSTTop 
OldScreen 

: Command; { command list detail } 
: integer; { current command to execute > 
: array [0..20] of string[40]; 

'word; 
WindowPtr; 

{ top of heap > 
{ screen storage > 

OBJECT CLASS DECLARATIONS 

const 
MaxClasses = 4; 
MAILMAN = 0; C 
SIMULATE = 1; { 
ENTITY = 2; { 
ROUTING = 3; ( 
SERVQUE = 4; ( 

CLSNAMES : array [0 

simulation class } 
entity class > 
routing class } 

('MAILMAN','SIMULATE','ENTITY','ROUTING','SERVQUE'); 

[69,101,76,108,85,117]; 
[68,100,78,110,85,117]; 

CASES : MenuSet 
KEYSET : MenuSet 
FTYPESET ; MenuSet = 

[65..69,72,73,78,80,82..84,87,89,97..101, 
104,105,110,112,114..116,119,121]; 

DBFORMLEH = 50; 
DBTITLELEN = 10; 

type 
DBTitleStr = string[DBTITLELEN]; 
DBFormStr = string[DBFORMLEN]; 

{ max formula length } 
{ max title length > 

{ title type string > 
{ formula string type } 

w 

const 
DBHAXRECLEN = 500 { 
DBMINRECLEN = 14 { 
DBMAXFIELDS = 100 { 
DBMAXFLDLEN = 75 { 
DBMINY = 3 { 
DBMAXY 20 { 

maximum size of a record } 
minimum size of a record } 
maximum number of database fields > 
maximum field length > 
min Y screen position > 
max Y screen position > 
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DBBBYTE : byte =0; { field defaults } 
DBBCHAR : char = ' 
OBBEHTRY: string[6] = '000000'; 
DBBINT : integer = 0; 
DBBREAL : real = 0.0; 
DBBWORD : word = 0; 
OBBHIN : byte =0; { allowable numeric ranges > 
DBBMAX : byte = 255; 
DBIHIN : integer = -32768; 
DBIHAX : integer = 32767; 
DBRHIN : real = -9.9999999999E+U; 
DBRHAX : real = 9.9999999999E+14; 
DBUHIN : word = 0; 
DBUMAX : word = 65535; 
DBCALC ; boolean = TRUE; { field def identifiers > 
DBNCALC : boolean = FALSE; 
DBMAND : boolean = TRUE; 
DBNHAND : boolean = FALSE; 
DBUTITLE: boolean = TRUE; 
DBNTITLE: boolean = FALSE; 
DBUPLOU : char = 'E'; 
DBLOUC : char = 'L'; 
OBUPC : char = 'U'; 
OBNKEY : char = 'N'; 

type 
DBFieldPtr = "DBField; 
DBField = record { input screen definition ) 

Title : OBTitleStr; ( field title } 
FType : char; { field type } 
Len : byte; { field length > 
Decs : byte; { decimal precision } 
X : byte; { X position > 
Y : byte; ( Y position ) 
Page ; byte; { field page > 
ALen : byte; { byte length of field ) 
AOfs : integer; { offset into record } 
CCase ; char; { up/low conversion type } 
Hand : boolean; { mandatory entry? ) 
Calc : boolean; { calculated field } 
KType : char; { key: N}o D)ups U)nique > 
OkSet : HenuSet; { allowable chars } 
Form : DBFormStr; { formula for this field > 
UTitle: boolean; { on screen w/title? ) 

end; 

DBScrLineRec = record { screen line record > 
Page : byte; 
Line : byte; 
Cont ; array [0..79] of word; 

end; 

DBFileRec = record { database definition file record > 
case RType: byte of 

0: ( FieldDef: DBField ); 
1: ( ScrLine : DBScrLineRec ); 

end; 

DBBufPtr = 'DBBufArray; 
DBBufArray = array [0..DBHAXRECLEN] of byte; { buffer > 

DBFOataArray = array [0..DBHAXFLDLEN] of byte; { buffer > 

DBFieldArray = array [0..DBHAXFIELDS] of DBFieldPtr; 

MESSAGE TYPE DECLARATIONS 

type 

InstType = string[5]; { instance identifier type > 

StatusType = (IDLE,BUSY,BLOCKED); { server status > 

HsgType = ( 

NMSG, { nil message > 

CLEAR_OBJ, { clear object data fields > 
DELETE_OBJ, { delete an instance of an object > 
ENTER_5BJ, { enter (user) new data for an object > 
LOAD_OBJ, { load simulation objects from disk } 
SAVE~OBJ, { save simulation objects to disk } 
SHOW_CURR_OBJ, { show current instance of an object > 
SHOW_NEXT_OBJ, { show next instance of an object > 
SHOW_PREV_OBJ, { show previous instance of an object > 
UPDATE_OBJ, { update (user) the data for an object > 
UPDATE_CLOCK, { update the simulation clock } 
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GEN_ARR_TIHE, 
GEN_ARRIVAL, 
GET_NEXT_RTE, 
GET_ALT_RTE, 
GET FAIL_RTE, 
GET_FAIL RTRY, 
REQ_SQ_ENTRY, 
REQ_SQ GRANTED,{ 
REO_SQ DENIED, { 
REO_SQ_COMP, { 
SCH_SQ_COHP, ( 
SQ_COHPLETE, { 
ENTITY SQ_COHP,{ 
ENTITY"LEAVE_SQ, 
ENTITY SET FAIL, 
ENTITY_NO_?AIL, 
ENTITY DEP, 
LEAVE_SYS, 

determine arrival to generate & when } 
general next arrival of an entity > 
get next routing for an object > 
request denied, get alternate route > 
request service/queue after failure ) 
request denied after failure, retry > 
entity request for service or queue > 
request for service/queue granted > 
request for service/queue denied > 
request completion of service time > 
schedule the completion of service > 
a service has been completed > 
tell entity it completed service/queue > 
{ tell service/queue entity has left > 
{ set an entity to fail service > 
{ set an entity not to fail service > 
{ entity has departed system > 
{ tell entity to leave system > 

REPORT_SIH, { report on the simulation > 
END SIMULATION { end the current simulation } 

); 

HsgPacketPtr = "HsgPacketType; 
HsgPacketType = record 

FromCls : byte; { from class > 
Fromlnst: InstType; { from instance > 
ToCls : byte; { to class > 
Tolnst : InstType; { to instance > 
Message : MsgType; { the message > 
Number : real; { number to pass } 
Clock : real; { time to execute } 
Next : MsgPacketPtr; { next message > 

end; 

const 

ROUNDFACT: 
NINST : 
PRIORITY : 

real = 0.1; { rounding for service denials } 
InstType = ' { a nil instance id } 
real = -1.0; { priority message flag > 

SoopHsgs : array [0..30] of string[20] = ( 
•N1L_HESSAGE', { 0 } 
'CLEAR OBJ', { 1 } 
'DELETË_0BJ', { 2 } 
'ENTER OBJ', { 3 } 
'LOAD OBJ', { 4 } 
'SAVE_OBJ', { 5 } 
'SHOW CURR_OBJ', { 6 } 
'SHOW"NEXT OBJ', { 7 } 
«SHOW_PREV_OBJ', { 8 } 
'UPDATE_OBJ', { 9 } 
'UPDATE_CLOCK', { 10 } 
'GEN ARR TIME', { 11 } 
'GEN ARRIVAL', { 12 } 
'GET_NEXT RTE', { 13 } 
'GET_ALT_RTE', { 14 } 
'GET FAIL RTE', { 15 } 
•GET FAIL_RTRY', ( 16 } 
'RE0]S0_ENTRY', { 17 } 
•REQ_SQ GRANTED', C 18 > 
'REO SO DENIED', { 19 } 
'REQ SO COMP', { 20 > 
'SCH"SQ_COMP', { 21 } 
'SQ COMPLETE', { 22 > W 
•ENTITY SO COMP', { 23 } ^ 
'ENTITY"LEAVE SO', C 24 } 
'ENTITY_SET_FAIL', { 25 } 
'ENTITY_NO_FAIL', { 26 } 
'ENTITY DEP', { 27 } 
'LEAVE SYS', { 28 } 
'REPORT_SIH', { 29 } 
'END SIMULATION' { 30 } 

); 

var 
FirstMsg : HsgPacketPtr; { working pointer for messages } 
SimName : string[8]; { name of current simulation > 
CurrCls : byte; { currently displayed class > 
SimClock : real; { current simulation time > 
Paused : boolean; { is simulation paused? > 
SStep : boolean; { is single stepping on? > 
MsgCount : word; { current count of messages > 
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; AHSTSCRN.ASH 
; Fast screen writing routines 

DATA SEGMENT BYTE PUBLIC 

EXTRN ScreenAdr:UORO 
EXTRN RetraceHoderBYTE 

DATA ENDS 

CODE SEGMENT BYTE PUBLIC 

ASSUME CS:CODE,DS:DATA 

PUBLIC FastUrite,ChangeAttribute 
PUBLIC MoveFromScreen,MoveToScreen 

;Pascal variables 

;calculate Offset in video memory. 
;0n entry, AX has Row, DI has Column 
;0n exit, ES has ScreenAdr, 01 has offset 

CalcOffset 

DEC 
MOV 
HUL 
DEC 
ADD 
SHL 
MOV 
RET 

CalcOffset 

PROC NEAR 

AX 
CX,50H 
CX 
DI 
DI,AX 
DI,1 
ES,ScreenAdr 

ENDP 

;Row to 0..24 range 
;CX = Rows per colum 
;AX = Row * 80 
;Column to 0..79 range 
;DI = (Row * 80) + Col 
;Account for attribute 
;ES:DI points to Row,Col 
;Return 

(•procedure FastWriteCSt : String; Row, Col, Attr : Integer),-

;Urite St at Row.Col in Attr (video attribute) without snow 

FUAttr EQU BYTE PTR [BP+6] 
FUCol EQU WORD PTR [BP+8] 
FURow EQU UORD PTR [BP+10] 
FWSt EQU DUORD PTR [BP+12] 

FastUrite 

PUSH 
MOV 
PUSH 
MOV 
MOV 
CALL 
MOV 
LDS 
CLD 
XOR 
LODSB 
XCHG 
JCXZ 
MOV 
RCR 
JNC 
MOV 

FWGetNext: 
LODSB 

MOV 
CLI 

FUUaitHoH: 
IN 
TEST 
JNZ 
RCR 
JC 

FUWaitH: 
IN 
RCR 
JNC 

FUStore: 
MOV 
STOSU 
ST I 
LOOP 
JMP 

FUMono: 
LODSB 

STOSU 
LOOP 

PROC FAR 

BP ;Save BP 
BP,SP ;Set up stack frame 
DS ;Save DS 
AX,FURow ;AX = Row 
DI,FUCol ;DI = Colum 
CalcOffset ;calculate offset 
CL.RetraceMode ;Grab before changing DS 
SI.FUSt ;DS:SI points to St[0] 

;Set direction to forward 
AX,AX ;AX = 0 AX,AX 

;AX = Length(St); 
AX.CX ;CX = Length; AL = Uait 
FUExit ;If string empty, exit 
AH,FUAttr ;AH = Attribute 
AL,1 ;If RetraceMode is False 
FUMono ; use "FUMono" routine 
DX,03DAh ;point DX to CGA status 

;Load next char into AL 
; AH already has Attr 

BX,AX ;Store video word in BX 
;No interrt^its now 

AL,DX ;Get 6845 status 
AL,8 ;Vert retrace in progress? 
FUStore ;If so, go 
AL,1 ;Else, wait for end of 
FUUaitNoH ; horizontal retrace 

AL,DX ;Get 6845 status again 
AL,1 ;Uait for horizontal 
FUUaitH ; retrace 

AX,BX ;Move word back to AX... 
; and then to screen 
;AUow internists! 

FUGetNext ;Get next character 
FUExit ;Done 

;Load next char into AL 
; AH already has Attr 
;video word into place 

FUMono ;Get next character 
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FUExit: 
POP DS ;Restore OS 
MOV SP.BP ;Restore SP 
POP BP ; Restore BP 
RET 10 ;Remove panes and return 

FastWrite ENDP 

;procedure ChangeAttributeCNumber : Integer; Row, Col, Attr: 
Integer); 

;Change Number video attributes to Attr starting at Row,Col 

CAAttr EQU BYTE PTR [BP+6] 
CACol EQU WORD PTR [BP+8] 
CARow EQU WORD PTR [BP+10] 
CANumber EQU WORD PTR [BP+12] 

ChangeAttribute PROC FAR 

PUSH BP ;Save BP 
MOV BP.SP ;Set 14> stack frame 
MOV AX.CARow ;AX = Row 
MOV DI,CACol ;DI = Column 
CALL CalcOffset ;calculate offset 
INC DI ;Skip character 
MOV AL.CAAttr ;AL = Attribute 
CLD ;Set direction to forward 
MOV CXfCANunber ;CX = Number to change 
JCXZ CAExit ;If zero, exit 
CMP RetraceHode,1 ;Get wait state 
JNE CANoWait ;lf RetraceHode is False 

; use CANoWait routine 
MOV AH.AL ;Store attribute in AH 
MOV DX,030Ah ;Point DX to CGA status 

CAGetNext: 
CLI ;No interrupts now 

CAWaitNoH: 
IN AL,OX ;Get 6845 status 
TEST AL,8 ;Check for vert, retrace 
JNZ CAGo ;In progress? Go 
RCR AL,1 ;Wait for end of hor. 
JC CAWaitNoH ; retrace 

CAWaitH: 
IN 
RCR 
JNC 

CAGo: 
MOV 
STOSB 
STI 
INC 
LOOP 
JHP 

CANoWait: 
STOSB 
INC 
LOOP 

CAExit: 
MOV 
POP 
RET 

AL,DX 
AL,1 
CAWaitH 

AL,AH 

DI 
CAGetNext 
CAExit 

DI 
CANoWait 

SP.BP 
BP 
8 

;Get 6845 status again 
;Wait for horizontal 
; retrace 

;Hove Attr back to AL... 
; and then to screen 
;Allow interrt4>ts 
;Skip characters 
;Look for next opportunity 
;Done 

;Change the attribute 
;Skip characters 
;Get next character 
;Next instruction 
;Restore SP 
;Restore BP 
;Remove params and return 

ChangeAttribute ENDP 

.****************************** 

W 
;procedure HoveFromScreen{var Source, Dest; Length:Integer); 

;Hove Length words from Source (video mem.) to Dest w/o snow 

MFLength EQU WORD PTR [BP+6] 
HFDest EQU DWORD PTR [BP+8] 
HFSource EQU DWORD PTR [BP+12] 

HoveFromScreen PROC FAR 

PUSH BP ;Save BP 
MOV BP,SP ;Set up stack frame 
MOV BX,DS ;Save DS in BX 
MOV AL,RetraceHode ;Grab before changing DS 
LES DI,HFDest ;ES:DI points to Dest 
LDS SI,HFSource ;DS:SI points to Source 
MOV CX,HFLength ;CX = Length 
CLD ;Set direction to forward 
RCR AL,1 ;Check RetraceHode 
JNC MFNoWait ; False? Use MFNoWait 
MOV DX,03DAh ;Point DX to CGA status 
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HFNext: 
CLI 

HFUaitNoH: 
IN 
TEST 
JNZ 
RCR 
JC 

HFUaitH: 
IN 
RCR 
JNC 

MFGo: 
LODSU 
STI 
STOSU 
LOOP 
JHP 

HFNoUait: 
REP 

HFExit: 
MOV 
MOV 
POP 
RET 

AL.DX 
AL,8 
MFGo 
AL,1 
HFUaitNoH 

AL.DX 
AL,1 
HFUaitH 

HFNext 
HFExit 

HOVSU 

OS.BX 
SP.BP 
BP 
10 

HoveFromScreen ENDP 

;No interrupts now 

;Get 6845 status 
;Check for vert, retrace 
;In progress? go 
;Uait for end of hor. 
; retrace 

;Get 6845 status again 
;Uait for horizontal 
; retrace 

;Load next vid. word to AX 
;Allow interrupts 
;Store video word in Dest 
;Get next video word 
;All Done 

;That's iti 

;Restore DS 
;Restore SP 
;Restore BP 
;Remove params and return 

procedure HoveToScreenCvar Source, Dest; Length : Integer); 

Hove Length words from Source to Dest (vid. memory) w/o snow 

HTLength 
HTDest 
HTSource 

HoveToScreen 

PUSH 
MOV 
PUSH 
HOV 
LES 
LOS 

EQU 
EQU 
EQU 

PROC FAR 

UORD PTR [BP+6] 
DUORD PTR [BP+8] 
DUORD PTR [BP+12] 

BP 
BP.SP 
DS 
AL.RetraceHode 
DI,HTDest 
SI,HTSource 

;Save BP 
;Set up stack frame 
;Save DS 
;Grab before changing DS 
;ES:DI points to Dest 
;DS:SI points to Source 

HOV 
CLD 
RCR 
JNC 
HOV 

HTGetNext: 
LODSU 
HOV 
CLI 

HTUaitNoH: 
IN 
TEST 
JNZ 
RCR 
JC 

HTUaitH: 
IN 
RCR 
JNC 

HTGo: 
HOV 
STOSU 
STI 
LOOP 
JHP 

HTNoUait: 
REP 

HTExit: 
POP 
HOV 
POP 
RET 

CX,HTLength 

AL,1 
HTNoUait 
DX,03DAh 

BX,AX 

AL,DX 
AL,8 
HTGo 
AL,1 
HTUaitNoH 

AL.DX 
AL,1 
HTUaitH 

AX.BX 

HTGetNext 
HTExit 

HOVSU 

DS 
SP.BP 
BP 
10 

;CX = Length 
;Set direction to forward 
;Check RetraceMode 
;False? Use HTNoUait 
;Point DX to CGA status 

;Load next vid. word to AX 
;Store video word in BX 
;No interrupts now 

;Get 6845 status 
;Check for vert, retrace 
;ln progress? Go 
;Uait for end of hor. 
; retrace 

;Get 6845 status again 
;Uait for horizontal 
; retrace 

;Move word back to AX... 
; and then to screen 
;Allow interrupts 
;Get next video word 
;All done 

;That's altl 

;Restore DS 
;Restore SP 
;Restore BP 
;Remove params and return 

W 
o\ 

HoveToScreen ENDP 

CODE ENDS 

END 
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unit SOOPGEN; 
{ standard routines } 

{$! COHPOIRS.PAS> 

interface 

uses Crt,Dos; 

{$I SOOPOEFS.PAS> C include program defaults & settings > 

{============ GENERAL SERVICE ROUTINES =%==================} 

procedure Beep; 
{ Puts 1/4 second of 440 Hz out on the speaker. > 

function UserAbort:boolean; 
{ allow user to abort an operation } 

procedure Int240n; 
{ enable new Int24 error handler } 

procedure Int240ff; 
{ restore original Int24 error handler > 

procedure SetCursor(NewHode:byte); 
( Turns current cursor block/on/off } 

function InsHode:byte; 
{ determine if Insert is off (0) or on (1) > 

=============== SCREEN HANDLING ROUTINES ===========} 

procedure FastWrite(St : string; Row, Col, Attr : Integer); 
{ Writes St at Row,Col in Attr (video attribute) w/o snow } 

procedure ChangeAttribute(Number, Row, Col, Attr ; Integer); 
{ Change Number vid. attributes to Attr starting at Row,Col ) 

procedure HoveToScreenCvar Source, Dest; Length : Integer); 
{ Moves Length words from Source to Dest w/o snow > 

procedure HoveFromScreenCvar Source, Dest; Length : Integer); 
{ Moves Length words from Source to Dest without snow } 

procedure WriteFast(X,Y,SC:byte; Ststring); 
{ write a string at X,Y in SC color > 

procedure WriteAt(X,Y;byte; S:string); 
{ write a string at X,Y with specified imbedded colors > 

procedure UriteCaps(X,Y,C1,C2: byte; Sistring); 
{ write a string with Caps bolded > 

procedure WriteVert(X,Y,Nura,SC:byte; Chichar); 
{ repeat a character vertically Num times in SC color > 

procedure UriteVertStr(X,Y,SC;byte; S:string); 
{ repeat a string vertically in SC color > 

procedure ScroUW{ndow(ULX,ULY,LRX,LRY,SC:byte; 
Num:shortint); 

{ scroll area of the screen Num lines & clear to SC > 

procedure SaveWindow(ULX,ULY,LRX,LRY:byte; 
var SavetoiWindowArray); 

{ put screen in window storage for later recall > 

procedure RestoreUindow(var RestFrooiiUindowArray); 
C restore a previously saved window } 

procedure SaveLines(StartLine,NunLines:byte; var Saveto); 
{ save a number of 80 column screen lines } 

procedure RestoreLines<StartLine.NumLines:byte; 
var RestFrom); 

{ restore a number of 80 colum screen lines > 

function GetScrChar(X,Y:l^te)zuord; 
{ get character and attribute from screen } 

procedure ChangeScr(ULX,ULY,LRX,LRY,SC:byte); 
{ change screen attribute of defined rectangle > 

====== ======= STRING MANIPULATION = } 

function CharStr(Ch;char; Len:byte):string; 
{ return a string with Len chars } 
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function Value(S:String):real; 
{ strips string S of blanks and converts to a real nunter > 

procedure RoundIt(var R:real;Places:byte); 
{ rounds R to Places accuracy > 

function Equal(R1,R2:real):boolean; 
{ check if 2 numbers are equal (removes rounding problem) > 

function UpLoHStr(S:String;CType:char):String; 
{ convert string to upper/lower case > 

function StripLeft(S:string; Ch:char):string; 
{ strips Ch from left of S > 

function StripRight(S:String; Ch:char):string; 
{ strips Ch from right of S > 

function PadLeft(S;string; Ch:char; Len;byte):string; 
{ pads S with Ch on left to length Len > 

function PadR{ght(S:string; Ch:char; Len:byte):string; 
{ pads S with Ch on right to length Len > 

function CenterStr(S:string; Ch:char; Len:byte):string; 
{ center string S in field of Ch, Len characters wide } 

function BytetoHex(V:byte):HexStr; 
{ convert a byte to it's hex string equivalent > 

function HextoByte(H:HexStr):byte; 
{ convert a hex string to it's byte equivalent > 

function HakeStr(var FData; M,N:integer; FType:char);string; 
{ make a string from some type of data } 

function FullPath(InPath:string; AddSlash:boolean):string; 
{ build a full '\' delimited path string > 

procedure HakeBox{ULX,ULY,LRX,LRY,SC,BType,Barline:byte; 
Title:string); 

{ draw a frame 0=no frame 1=single, 2=double, 3,4 w/title 
aY+1 Barline puts horizontal line > 

implementation 

{=====%======= GENERAL SERVICE ROUTINES ==================== 

procedure Beep; 
{ Puts 1/4 second of 440 Hz out on the speaker. > 
begin 

if (not DefBeep) then Exit; 
Sound(440); Delay(125); Nosound; 

end; 

function UserAbort:boolean; 
{ allow user to abort an operation > 
var 

Ch : byte; 
Regs : registers; 

begin 
UserAbort:=FaIse; 
if Keypressed then begin 

Regs.Ax:=SOOOO; { read keyboard > 
Intr($16,Regs); 
if Lo(Regs.Ax)=SOO then Ch:=128+Hi(Regs.Ax) 
else Ch:=Lo(Regs.Ax); 
UserAbort:=(Ch=ESC); 

end; 
while Keypressed do begin { clear keyboard buffer > 

Regs.Ax:=$0000; 
Intr($16,Regs); 

end; 
end; 

function IOResultPrim:Uord; 
{ Calls loResult for Int24 } 
begin 

lOResultPrim := lOResult; 
end; 

{$F+> 
procedure 
Int24(Flags,CS,IP,AX,BX,CX,DX,SI,DI,DS,ES,BP:Hord);interrupt 
{ general purpose critical error handler } 
type 

ScrPtr = "ScrBuf; 
ScrBuf = array [1..320] of byte; 
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Display, OldLine: ScrPtr; 
AH,AL ; byte; 
OldAttr : ̂ te; 
Row,CoI : integer; 
Action : char; 
ErrHsg : string; 
ErrCode : word; 
Ch ; shortint; 
DevAttr : "word; 
DevName : "char; 

begin 
ErrCode:=IOResultPrin); C call lOResult before to clear } 
if IsHono then Display;=ptr($B000,Pred(HSGLI>JE)*160) 
else Display:=ptr(SB800,Pred(HSGLINE)*160); 
New(OldLine); 
OldLine':=Display*; 
AH:=Hi(AX); 
AL:=Lo{AX); 
Col:=WhereX; 
Row;=UhereY; 
OldAttr;=TextAttr; 
ErrHsg:="; 
if (AH and $80) = 0 then begin 

ErrCode:=Lo(DI); 
case ErrCode of 

$00: ErrHsg 
= Write protect'; 

$01: ErrHsg = Internal DOS'; 
$02: ErrHsg 

= Hot ready'; 
$03: ErrHsg = Internal DOS'; 
$04: ErrHsg = Bad sector'; 
$05: ErrHsg 

= Internal DOS'; 
$06: ErrHsg 

= 
Seek'; 

$07: ErrHsg Unknown media or bad disk 
$08: ErrHsg 

= Sector not found'; 
$09: ErrHsg = Printer out of paper'; 
$0A; ErrHsg = Write fault'; 
$08: ErrHsg = Read fault'; 
$0C: ErrHsg = General failure'; 
$00: ErrHsg = Bad FAT'; 
else ErrHsg 

= Unknown'; 
end; 
if ErrCode<>$09 then ErrHsg:=ErrHsg+ 
' error on drive '+Chr(AL+65); 

end 
else begin 

DevAttr:= Ptr(BP, SI+4); { point to device word > 
if (DevAttr* and $8000) <> 0 then begin { if bit 15 on > 

Ch:=0; 
repeat 

DevNanie:=Ptr(BP,SI+$OA+Ch); 
ErrHsg:=ErrHsg+DevNanie*; 
Inc(Ch); 

until (DevName'=Chr(0)) or (Ch>7); 
ErrHsg;=ErrHsg + ' not responding'; 
ErrCode:=$02; 

end 
else begin 

ErrHsgzF'Bad File Allocation Table'; 
ErrCode:=$00; 

end; 
end; 
GotoXY(1,HSGLINE); 
TextAttr:=ErrorC; 
ClrEol; 
WriteC ',ErrHsg,' — A)bort or R)etry7'); 
Beep; 
repeat 

Action:=Upcase(Readkey); 
until Action in [#27,'A','R']; w 
Display":=OldLine*; ^ 
Dispose(OldLine); 
GotoXY(Col,Row); 
TextAttr:=OldAttr; 
case Action of 

#27,'A'; begin 
CritError:=ErrCode; 
AX:=0; 

end; 
'R': begin 

CritError:=0; 
AX:=1; 

end; 
end; 
ErrCode:=IOResultPrini; C call lOResult after to clear } 

end; 
<$F-> 
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procedure Int240n; 
{ enable new Int24 error handler > 
begin 

GetIntVec($24,OldInt24); { save old lnt24 vector > 
SetIntVec(S24.aint24); { install new error handler } 
CritError:=0 
PasError ;=0 
AMSTError:=0 

end; 

( and set global errors to 0 

procedure Int240ff; 
{ restore original Int24 error handler > 
begin 

SetIntVec($24,0ldInt24); { restore old Int24 vector } 
end; 

procedure SetCursorCNewMode:byte); 
{ turns cursor block/on/off } 
var 

Regs : Registers; 
begin 

with Regs do begin 
AX := $0100; 
BX := $0000; 
CurrentCursor:=NewMode; 
case NewMode of 

0; CX:=CursorBlk; 
1: CX;=CursorOn; 
2: CX:=CursorOff; 

end; 
end; 
Intr(S10,Regs); 

end; 

function InsHode:byte; 
{ determine if Insert is off (0) or on (1) > 
begin 

InsHode:= (Hem[£0000:$0417] and $80) shr 7; 
end; 

{=====%======= SCREEN HANDLING ROUTINES ==================} 

{$L SOOPSCRN} { load assembly language routines > 
procedure FastWrite(St:string; Row,Col,Attr:Integer); 

external; 
procedure ChangeAttribute(Number,Row,Col,Attr:Integer); 

external; 
procedure MoveToScreen(var Source,Dest; Length:Integer); 

external; 
procedure HoveFromScreenCvar Source,Dest; Length:Integer); 

external; 

procedure WriteFast(X,Y,SC:byte; S:string); 
{ write a string at X,Y in SO color > 
begin 

FastWrite(S,Y,X,SC); 
end; 

procedure UriteAt(X,Y;byte; S:string); 
C write a string at X,Y with specified intedded colors > 
var 

Attrs : array [0..6] of byte Absolute BackC; 
CAttr : byte; { current attribute > 
Ps : byte; { current position > 
Len : byte; { length of string > 

begin 
if Pos(#255,S)=0 then begin 

FastWrite(S,Y,X,NormC); 
Exit; 

end; 
CAttr:=NormC; { default to normal text > 
Ps:=0; 
Len:=0rd(s[0]); 
while Ps<Len do begin 

Inc(Ps); 
if S[Ps]=#255 then begin 

CAttr:=Attrs[Ord(S[Succ(Ps)] )] ; 
Inc(Ps,2); 

end; 
FastUrite(StPs].Y.X.CAttr); 
Inc(X); 

end; 
end; 
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procedure UriteCaps(X,Y,C1,C2: byte; S;string); 
{ write a string in CI with Caps in C2 > 
var 

TStr : array [1..160] of byte; 
Count : byte; 

begin 
FillChar(TStr,160,C1); 
for Count:=1 to Length(S) do begin 

Hove(S[Count],TStrtPred{Count*2)],1); 
if S[Count] in then 

TStr[Succ(Pred(Count*2)>]:=C2; 
end; 
HoveToScreen(TStr,MeratScreenAdr:(Pred(Y)*160+(Pred(X)*2))], 
Length(S)); 

end; 

procedure UriteVert(X,Y,Nuni,SC:byte; Ch:Char); 
( repeat a character vertically Num times in SC color > 
var 

Count : byte; 
begin 

Count:=0; 
while Count<Num do begin 

FastUrite(Ch,Y+Count,X,SC); 
Inc(Count); 

end; 
end; 

procedure UriteVertStr(X,Y,SC;byte; S:string); 
{ repeat a string vertically n SC color > 
var 

Count ; byte; 
begin 

Count;=0; 
while Count<Length(S) do begin 

FastUri te(S[Succ(Count}],Y+Count,X,SC); 
Inc(Count); 

end; 
end; 

procedure ScrollWindow(ULX,ULY,LRX,LRY,SC:byte; 
Numrshortint); 

{ scroll an area of the screen Num lines & clear to SC > 
var 

Regs : registers; 
I,NC ; byte; 
Buffer : LineArray; 
BlankLine : string[80]; 

begin 
if ((not RetraceHode) or (Num=0)) then with Regs do begin 

if Num<0 then AH:=$06 { for scroll up > 
else AH:=$07; { for scroll down > 
AL:=Abs(Num); { scroll Num lines } 
CX:=Pred(ULY) shl 8 + Pred(ULX); 
DX:=Pred(LRY) shl 8 + Pred(LRX); 
BH:=SC; 
Intr($10,Regs); 

end 
else begin 

NC:=Succ(LRX-ULX); 
FillChar(BlankLine[1],NC,$20); 
BlankLine[0]:=Chr(NC); 
if Num>0 then begin 

for I := Pred(LRY) downto ULY do begin 
HovefrcmScreen(Hera[ScreenAdr:(Pred(I)*160+ 

(Pred(ULX) shl 1))],Buffer,NC); 
HovetoScreenCBuffer.HemlScreenAdr:(1*160+ 

(Pred(ULX) shl 1))],NC); 
end; 
FastWrite(Blankline,ULY,ULX,SC); 

end 
else begin 

for I := ULY to Pred(LRY) do begin 
HovefromScreen(Hem[ScreenAdr:(I*160+ 

(Pred(ULX) shl 1))].Buffer.NC); 
MovetoScreen(Buffer,Mem[ScreenAdr:(Pred(I)*160+ 

(Pred( ULX) shl 1))],NC); 
end; 
FastWrite{BlankLine.LRY,ULX,SC); 

end; 
end; 
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procedure SaveUi ndowCULX,ULY,LRX,LRY:byte; 
var SaveTo:UindowArray); 

( put screen in window storage for later recall > 
var 

I.NC : byte; 
begin 

NC:=Succ(LRX-ULX); 
for I := ULY to LRY do 

MoveF romScreenCMem[ScreenAdr:(Pred(I)*160+ 
(Pred(ULX) shl 1))],SaveTo.AddfPred(I)],NC); 

SaveTo.ULX:=ULX; 
SaveTo.ULY:=ULY; 
SaveTo.LRX:=LRX; 
SaveTo.LRY;=LRY; 

end; 

procedure RestoreWindowCvar RestFroni:UindowArray); 
{ restore a previously saved window > 
var 

I,NC : byte; 
begin 

NC:=Succ(RestFrom.LRX-RestFrom.ULX); 
for I := RestFrom.ULY to RestFrom.LRY do 

HoveToScreen(RestFroni.Add[Pred(I)], Hem [ScreenAdr: 
(Pred(l) •160+(Pred<RestFroni.ULX) shl 1))1,NC); 

end; 

procedure SaveLines(StartLine,NumLines:byte; var Saveto); 
{ save a nunber of 80 column screen lines > 
var 
I : byte; 

begin 
for I:=StartLine to Pred(StartLine+NumLines) do 

MovefromScreen(Mem[ScreenAdr:Pred(I)*160], 
Heni[Seg(Saveto):0fs(SaveTo)+((I-StartLine)*160)J ,80) 

end; 

procedure RestoreLines(StartLine,NumLines:byte; 
var RestFrom); 

{ restore a number of 80 column screen lines > 
var I : byte; 
begin 

for I:=StartLine to Pred(StartLine+NumLines) do 
MoveToScreen(Mem[Seg(RestFrom):Ofs(RestFrom)+ 

((I-StartLin e)*160)],Hem[ScreenAdr:Pred(I)*160],80) 
end; 

function GetScrChar<X,Y:byte):word; 
{ get character and attribute from screen > 
var 

SCWord: Word; 
begin 

MoveFromScreenCMem[ScreenAdr:(PredCY)*160+ 
(Pred(X) shl 1))].SCWord,1); 

GetScrChar:=SCWord; 
end; 

procedure ChangeScrCULX,ULY,LRX,LRY,SC:byte); 
( change screen attribute of defined rectangle > 
var 

Line,Cols : byte; 
begin 

Cols:=Succ(LRX)-ULX; 
for Line;=ULY to LRY do 

ChangeAttributeCCols, Line, ULX, SC); 
end; 

{=======%====== STRING MANIPULATION ========== =======} 

function CharStr(Ch:char; Len:byte):string; 
{ return a string with Len chars > N 
var 

S ; string; 
begin 

S[0] := Chr(Len); 
FillChar(S[11, Len, Ord(Ch)); 
CharStr := S; 

end; 

function Value(S:string):real; 
{ strips string S of blanks and converts to a real number } 
var 

R : real; 
Code : integer; 

begin 
while Pose ',S)<>0 do Oelete(S,Pos(• ',S),1); 
if S[Length(S)]='.' then S;=S+«0'; 
Val(S,R,Code); 
Value:=R; 

end; 
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procedure Roundit(var R;real;Places:byte>; 
{ rounds R to Places accuracy > 
var 

SrString; 
begin 

Str(R:12:Places,S); 
R:=Value(S); 

end; 

function Equal(R1,R2:real):boolean; 
{ check if 2 numbers are equal (removes rounding problem) > 
begin 

Equal:=(Abs(R1-R2)<0.0000001); 
end; 

function UpLouStr(S:String;CType:char):String; 
{ convert string to upper/lower case J 
var 

Prbyte; 
begin 

case CType of 
'L': for P:=1 to Length(S) do if S[P] in then 

SEP] :=Chr(Ord(S[P] )+32); 
'U': for P:=1 to Length(S) do S[P]:=UpCase(S[P]); 

end; 
UpLowStr:=S; 

end; 

function StripLeft(S:string; Ch:char):string; 
{ strips Ch from left of S > 
var 

Done : boolean; 
begin 

Done:=(Length(S)=0); 
while ((Length(S)>0) and (not Done)) do begin 

Done:=(Copy(S,1,1)<>Ch); 
if not Done then Delete(S,1,1); 

end; 
StripLeft;=S; 

end; 

function StripRight(S:string; Ch:char):string; 
{ strips Ch from right of S } 
var 

Done : boolean; 

begin 
Done:=(Length(S)=D); 
while ((Length(S)>0) and (not Done)) do begin 

Done:=(Copy(S,Length(S),l)<>Ch); 
if not Done then Delete(S,Length(S),1); 

end; 
StripRight:=S; 

end; 

function PadLeft(S:string; Ch:char; Len:byte):string; 
{ pads S with Ch on left to length Len > 
begin 

while Length(S)<Len do S:=Ch+S; 
PadLeft:=S; 

end; 

function PadRight(S:string; Ch:char; Len:byte):string; 
{ p^s S with Ch on right to length Len } 
begin 

while Length(S)<Len do S:=S+Ch; 
PadRight:=S; 

end; 

function CenterStr(S;string; Ch:char; Len:byte):str{ng; 
{ center string S in field of Ch, Len characters wide } 
var 

TStr : string; 
begin 

TStr:=StripLeft(StripRight(S,' '),' '); 
while Length(TStr)<Len do begin 

TStr:=TStr+Ch; 
if Length(TStr)<Len then TStr:=Ch+TStr; 

end; 
CenterStr:=TStr; 

end; 

function BytetoHex(V:byte):HexStr; 
{ convert a byte to it's hex string equivalent > 
const 

HEXCHARS : array [0..15] of char = '0123456789ABC0EF' 
begin 

BytetoHex:=HEXCHARS[V div 16] + HEXCHARSCV mod 16]; 
end; 
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function HextoByte(H:HexStr):byte; 
{ convert a hex string to it's byte equivalent > 
const 

HEXCHARS : string[16] = •0123456789ABCDEF'; 
begin 

H:=PadLeft(H,'0',2); 
if ((Pos(H[1],HEXCHARS)>0) and (Pos(H[2],HEXCHARS)>0)) then 

HextoByte:=Pred(Pos(H[1],HEXCHARS» shl 4 + 
Pred(Pos(H[2],HEXCHARS)) 

else HextoByte:=0; 
end; 

function HakeStr(var FData; M,N:integer; FType:char):string; 
{ make a string from some type of data > 
var 

A : string absolute FData; 
B : byte absolute FData; 
C : char absolute FData; 
I : integer absolute FData; 
L : longint absolute FData; 
R : real absolute FData; 
U : word absolute FData; 
Y : boolean absolute FData; 
TStr: string; 

begin 
case FType of 

'A','E': TStr:=PadRight(A,' ',H); 
'B': if H>0 then Str{B:H,TStr) else Str(B,TStr); 
'C: begin 

TStr:="+C; TStr:=PadRight(TStr,' ',H); 
end; 

'H': if H>0 then TStr:=PadLeft{BytetoHex(B),' ',M) 
else TStr:=BytetoHex(B); 

'I': if H>0 then Str(I:M,TStr) else Strd.TStr); 
'L': if H>0 then Str(L:H,TStr) else Str(L,TStr); 
'0': if Y then TStr:='On ' else TStr:='Off'; 
'R': Str(R:H:N,TStr); 
•W: if H>0 then Str(W:M,TStr) else Str(W,TStr); 
'Y': begin 

if Y then TStr:='Y' else TStr:='N'; 
TStr:=PadLeft(TStr,• '.M); 

end; 
else TStr:=CharStr(' ',H); 

end; 
HakeStr:=TStr; 

end; 

function FullPath(InPath:string; AddSlash:boolean):string 
{ build a full '\' delimited path string > 
begin 

case AddsIash of 
True ; if InPath[Length<InPath)]<>'\' then 

FullPath:=InPath+'\' else FullPath:=InPath; 
False: if Length(InPath)<3 then FullPath:=InPath+'\' 

else if Length(InPath)=3 then FullPath:=InPath 
else FullPath:=StripRight(InPath,'\'); 

end; 
end; 

procedure MakeBox(ULX,ULY,LRX,LRY,SC,BType,Barline:byte; 
Title:string); 

{ draw a frame 0=no box, 1=single, 2=double, 3,4=w/title 
aY+1 Barline puts line > 

const 
UUL : array [1. .2] of char = (#218,#2D1) 
WUR array [1. .2] of char 

= (#191,#187) 
ULL ; array [1. .2] of char = (#192,#200) 
ULR : array [1. .2] of char = (#217,#188) 
UH array [1. .2] of char (#196.#205) 
UV : array [1. .2] of char (#179,#186) 
UCL ; array [1. .2] of char = (#195,#199) 
UCR : array [1. .2] of char 

= (#180,#182) 
var 

I,NC : byte; 
TStr : string; 
LType: byte; 

begin 
ScrollUindow(ULX,ULY,LRX,LRY,SC,0); 
if BType>0 then begin 

LType:=BType; 
if LType>2 then Dec(LType,2}; 
NC:=Succ{LRX-ULX); 
TStr;=CharStr(UH[LType],HC); 
TStr[1]:=WUL [LType); 
TStr [NC]:=UUR (LType); 
FastUrite(TStr,ULY,ULX,SC); 
WriteVert(ULX,Succ<ULY),Pred(LRY-ULY),SC,UV[LType]); 
Wr i teVert(LRX,Succ{ULY),Pred(LRY-ULY),SC,UV[LType]); 
TStr[1] :=WLL[LType]; 
TStr [NO :=WLR [LType]; 
FastWrite{TStr,LRY,ULX,SC); 
if Barline>0 then begin 

TStr:=CharStr(WH[1],NC); 
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TStr[11;=watLType]; 
TStrtNC]:=UCRaType]; 
FastUrite(TStr,ULy+Bartine,ULX,SC); 

end; 
end; 
if Length(Title)>0 then case BType of 

0 : FastUrite(Title,ULY,ULX,SC); 
1,2 : FastUriteC '+Title+' ',ULY,ULX+2.SC); 
3,4 : FastWrite{Title.Succ(ULY),ULX+2,SC); 

end; 
end; 

PROGRAM STARTUP AND FINISH 

release heap space > 
set text to original } 
clear the screen > 
turn the cursor on > 
restore Dos Break State } 

{ 

{$F+> procedure AMSTExit; 
{ gracefully exit program > 
begin 

Release(AHSTTop); { 
TextAttr:=OrigTextAt; { 
ClrScr; { 
SetCursor(l); C 
SetCBreak(OosBreakState);{ 
Int240ff; 
ExitProc:=SavedExitProc; { 

end; 
{$F-> 

restore original exit address } 

procedure SetProgramlnit; 
{ initialize program parameters > 
var 

Regs : registers; 
ScHode: byte; 
IsEga : boolean; 
I : byte; 

begin 
SavedExi tProc;=Exi tProc; 
Exi tProc:=aAHSTExi t; 
GetCBreak(DosBreakState); 
SetCBreak(False); 
CheckBreak:=False; 
Or i gTextAt :=TextA11 r; 
with Regs do begin 

AX;=$OFOO; 

{ save original exit address > 
{ set new exit address > 
{ save Dos Break State > 
( now turn it off } 
{ Ctrl-Break checks off } 
{ save original screen colors ) 
{ get screen mode & set param } 

Intr($10,Regs); 
ScHode:=AL; 
AH := $12; C check if EGA installed and selected } 
BL := $10; 
CX := SFFFF; 
Intr($10, Regs); 
IsEga := (CX <> SFFFF); 

end; 
if ScHode = 7 then begin 

= SBOOO; ScreenAdr 
CursorOn := SOCOD; 
CursorBlk := $080D; 
BackC := $00; 
LowC := $07; 
NormC := $0F; 
InvC := $70; 
HeadC ;= $0F; 
ErrorC := $0F; 
HelpC := $70; 

end 
else ScreenAdr := $8800; 

must be mono screen ) 
Address of mono screen > 
default cursor for mono > 
default mono block cursor > 
background color > 
low text color > 
normal text color) 
inverse color 
headline color 
error color 

{ help line color 

{ otherwise is color monitor > 
RetraceMode := (ScHode<>7) and not(IsEga); { snow check } 
IsHono:=(ScHode=7); ( is this a mono monitor? > 
CheckSnow:=RetraceMode; { set Turbo's retrace check > 
TextAttr:=NormC; { set current program color > 
Hark(AHSTTop); { setup top of heap pointer > 
if MaxAvail>SizeOf(UindowArray) then New(OldScreeh) 
else begin 

FastWriteC 
•Insufficient memory to run program....press any key', 
12,10,ErrorC); 

if Readkey<>#0 then ; Halt; 
end; 
Int240n; { enable new error handler > 
ScroUUindowd, 1,80,25,NormC,0); { clear the screen > 
SetCursor(2); { turn off the cursor } 
if lnsMode=0 then Mem[$0000:$0417]:=Mem[$0000:$0417]+$80; 
Nosound; { make sure speaker is off > 
FillChar{CmdNum[1],HaxComList,1); { current command > 
CmdList:=1; { current command list > 
CurrCommand:=0; { current command } 

end; 

A 

begin 
SetProgramlnit; 

end. 
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unit SOOPGENI; 

{SI COHPDIRS.PAS> 

interface 

uses Crt,Dos,SOOPGEN; 

{=============== USER INPUT ROUTINES =======================> 

function Getakey:byte; 
{ get a keystroke and do UserTask while waiting > 

procedure UriteHelp(S:string); 
{ show S on HELPLINE of screen in HelpC color > 

procedure UriteMsg(SC:byte; S:string); 
{ show S on HSGLINE line of screen in SC color > 

procedure Hsg(S:String); 
< put S on screen and wait for keypress > 

function GetBool(S:String):boolean; 
{ put S on screen and wait a Y/N/Esc answer } 

function ErrorCheck(ShowHsg:boolean):boolean; 
{ check if there was an I/O or critical error > 

procedure ErrorMsg(ErrNum:byte); 
{ show error message > 

funct ion Hi IightConmandCOpt ion:integer):boolean; 
{ hi light conmand by number or first letter (0 hi Iites 1st) > 

procedure RunCommand(Selection:byte); 
{ hi light correct command and set command number ) 

function FileExist(FileNaine:string):boolean; 
{ returns True if file exists. False if file does not exist > 

function PrinterReadyiboolean; 
{ get printer status > 

funct ion Wri tePrt(S:string):booIean; 
{ print and check for errors or user abort ) 

function GetListVCX,Y,NI,CV:integer);integer; 
{ allow user to select from vertical list } 

function HakeFileNameCvar TFile:Str12):boolean; 
{ try to make a valid file name from string > 

function KeyBoard(OkSet:HenuSet; Cursor:byte):byte; 
{ gets a valid keystroke and optionally runs pop-ups > 

procedure ShouMenu(Nun:byte); 
{ show a menu in menu portion of screen > 

function DBGetUorkingBuffers(var B1,B2,B3:DBBufPtr):boolean; 
{ get buffers to store database records > 

function DBMakeName(FName:string; FType,OptNun:byte):string; 
{ make a filename > 

procedure DBGetBuffer(var FOata; ObjBufferrDBBufPtr; 
DFT:DBField); 

{ get contents of buffer > 

procedure DBPutBuffer(var FData; ObjBuffer:DBBufPtr; 
DFT:DBField); 

{ put contents into buffer > 

procedure DBPutFieldDefCvar DFT:DBField; 
Title:DBTitleStr;FType:char; 
Len,Decs,X,Y,Page,ALen:byte; 
AOfs:integer; CCase:char; 
Hand,Calc:boolean; ICeyTyp;char; 
OkSet:MenuSet; FomcDBFormStr; 
UTitle:boolean); 

{ put a definition into a DBField } 

function DidHandatoryEntryCvar FData; DBT:DBField):boolean; 
C check to see if this field has been entered } 

procedure DBGetField(var FData; var Next:byte;DBT:DBFietd; 
GType,SC:byte; ExRet;HenuSet); 

{ field input 0=Update only 1=Update 2=Enter 3=Prompted } 

function OBGetPronptedCvar FData; Prompt:string; FType:char; 
X,Y,Len,Decs,Sc:byte; CCase:char; OkSet:MenuSet):boolean; 

{ get prompted input from user > 
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procedure DBGetNextField(var FldNuni:byte;Next:byte; 
Obj F:DBFieldArray); 

i get the next field for data entry based on next pointer > 

function DBLoadDef(FHame:string; 
ObjBuffer,ObjTBuffer,ObjBBuffer:DBBufPtr; 
ObjF:DBFieldArray; 
Ob j Screen:UindouPtr):booIean; 

{ load database definition > 

procedure ObjectInit(ObjNun:byte; var ObjScreen:WindowPtr; 
var ObjBuffer,ObjTBuffer,ObjBBuffer:DBBufPtr; 
var ObjF:DBFieldArray); 

funct ion NextConpTiine( Inst : InstType) : reaI ; 
{ return the next time for a message > SimClock > 

procedure SendHsg(FromCls:byte;Fromlnst:lnstType; ToCls;byte 
ToInstMnstType; Hessage:HsgType; 
Number,Clock:real); 

{ send a Message } 

implementation 

{============== USER INPUT ROUTINES 

function Getakey:byte; 
{ get a keystroke and do UserTask while waiting } 
var 

Regs ; registers; 
begin 

repeat until KeyPressed; 
Regs.Ax:=SOOOO; { read the keyboard ) 
Intr(S16,Regs); 
if Lo(Regs.Ax)=SOO then Getakey:=128+Hi(Regs.Ax) 

else Getakey:=Lo(Regs.Ax); 
end; 

procedure UriteHelp(S:string); 
{ show S on HELPLINE of screen in HetpC color > 
begin 

FastWriteCPadrightC '+S,' ',80),HELPLINE,I.HelpC); 
end; 

procedure WriteHsg(SC;byte; S:string); 
{ show S on MSGLINE line of screen > 
begin 

FastWrite(Padright(« '+S,' ',80),MSGLINE,1,SC); 
end; 

procedure Msg(S:String); 
( put S on screen and wait for keypress > 
var 

OldCursor : byte; 
OldLine : LineArray; 

begin 
OldCursor:=CurrentCursor; C save old cursor mode > 
SetCursor(2); C turn the cursor off > 
SaveLines(MSGLINE,1,OldLine); { save screen > 
WriteMsg(ErrorC,S+' (press any key)'); 
Beep; 
if GetakeyoO then; 
RestoreLines(HSGLINE,1,OldLine); { restore screen } 
SetCursor(OldCursor); { restore previous cursor > 

end; 

function GetBool(S:String):boolean; 
{ put S on screen and wait a Y/N/Esc answer > ^ 
var 

OldCursor : byte; 
Ch : byte; 
OldLine ; LineArray; 
Regs ; registers; 

begin 
OldCursor:=CurrentCursor; { save old cursor mode } 
SetCursor(2); { turn the cursor off > 
SaveLines(MSGLINE,1,OldLine); { save screen > 
WriteMsg(ErrorC,S+' (Y/N)'); 
Beep; 
repeat { get the response } 

Ch:=Getakey; 
if not (Ch in YesNo+[ESC]) then Beep; C beep if invalid > 

until (Ch in YesNo+[ESC]); 
RestoreLines(HSGLINE,1,OldLine); { restore screen } 
SetCursor(OldCursor); { restore previous cursor > 
GetBool:=(Ch in Yes); 

end; 
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function ErrorCheck(ShouHsg:boolean):boolean; 
{ check if there was an I/O or critical error > 
var 

lOENum : integer; 
lOHsg : string; 

begin 
IOENum:=IOResult; { call lOResult to clear > 
if PASErroroO then IOENuni:=PASError; 
if lOENunpO then IOENum:=PASError; 
case lOENutn of 

$01: IOHsg:='Invalid function number'; 
$02: IOHsg:='File not found'; 
$03: IOHsg:='Path not found'; 
$04: IOHsg:='Too many open files'; 
$05: IOHsg:='Read-only or duplicate file, or non-empty 

directory'; 
$06: IOHsg:='Invalid file access code'; 
$07: IOHsg:='Memory control blocks destroyed'; 
$08: IOHsg:='Insufficient memory'; 
$09: IOHsg:='Invalid memory block address'; 
$0A: IOHsg:='Invalid environment'; 
$0B: IOHsg:='Invalid format'; 
$0C: IOHsg:='Invalid drive number'; 
$00: IOHsg:='Invalid data'; 
$0E: IOHsg:='Unknown I/O error'; 
$0F; lCHsg:='Invalid drive'; 
else IOHsg:='Unknown I/O error'; 

end; 
if ((CritError=0) and (IOENum>0)) then begin 

AMSTError:=(IOENum shl 8); 
if ShowHsg then Hsg('Error: '+IOHsg); 

end 
else AHSTError:=CritError; 
CritError:=0; 
PASError :=0; 
ErrorCheck:=(AHSTError<>0); 

end; 

procedure ErrorHsg(ErrNum:byte); 
{ show error message } 
begin 

PASE rror:=ErrNum; 
if ErrorCheck(True) then ; 

end; 

function Hi IightCommand(Option:integer):boolean; 
{ hilight the command by number or first letter > 
var 
I : byte; 
X.XI.Y : byte; 
LX : byte; 
TStr : string; 
HChr : char; 

begin 
TStr:=Commands.Line[1]+Commands.Line[2]; { work string > 
( get current X location > 
I:=0; 
LX:=Pos(':',TStr); 
Delete(TStr,l,LX); 
X:=1; 
while KCmdNunCCmdList] do begin 

Inc(X); 
if TStrtX] in ['A'..'Z'] then Inc(I); 

end; 
MChr:=#0; 
case Option of 

0 : MChr:=TStr[X]; 
1 : begin ( hilite next commnad > 

repeat 
if X=Length(TStr) then X:=1 
else Inc(X); 

until (TStrtX] in ['A'..'Z']); 
HChr:=TStr[X]; 

end; 
-1: begin { hilite previous command > 

repeat 
if X=1 then X:=Length(TStr) 
else Dec(X); 

until (TStr[X] in ['A'..'Z']); 
HChr;=TStr(X]; 

end; 
else begin { try to match a letter > 

X:=Pos(Upcase(Chr(Opt ion)),TStr); 
if X>D then HChr:=TStr[X]; 

end; 
end; { case > 
{ hilite the appropriate command and return command nun > 
if HChr<>#0 then begin 

Ur1teCaps(1.HENULINE,LowC,NormC,' '+ 
Commands.Lined]*' '); 
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UriteCaps(1,SuccCMENULINE),LowC,NormC,' '+ 
Commands.Line[2]+' '); 

X:=LX; Y:=HEHULINE; 
TStr:=Coninands.Line[1] ; 
CmdNumCCmdList]:=0; 
repeat 

Inc(X); 
if X=Length(TStr) then begin 

X:=1; Y:=Succ(HENULINE); 
TStr:=Coinnands.Line[2] ; 

end; 
if (TStrCXl in then IncCCmdNumtCmdList]); 

until (TStrIX]=HChr); 
X1:=X; 
while ((TStr[X1]<>« ') and (X1<Length(TStr))) do Inc(XI); 
if TStr[X1)<>' ' then Inc(XI); 
ChangeScr(X,Y,Succ(X1),Y,InvC); 
WriteHelpCCommands.Desc[CmdNumCCmdList]]); 

end; 
HilightCommand:=(MChr<>#0); 

end; { function HilightCommand } 

procedure RunCoainand(Selection:byte); 
{ hi light correct command, and set done to true if new menu } 
var 

OkCommand: boolean; 
begin 

OkCommand:=FaIse; 
case Selection of 

13 : OkCommand:=True; { run current command } 
65..90,97..122 : OkCommand:= 

HilightCommand(Ord(Upcase(Chr(Select i on)))); 
end; 
if OkCommand then CurrCommand:=CmdNum[CmdList] 
else Beep; 

end; 

function FileExist(FileName:string):boolean; 
{ returns True if file exists. False if file does not exist > 
var 

SR : SearchRec; 
begin 

FindFirst(FileHame, Readonly + Hidden + SysFile, SR); 
FileExist:=(DosError=0) and {Pos('?',FileName)=0) and 

(PosC*', FileName)=0); 
end; 

function PrinterReady:boolean; 
{ get printer status > 
var 

OldCursor : byte; 
OldLine : LineArray; 
Test : boolean; 
Done : boolean; 
Ch : byte; 
Regs : registers; 

begin 
repeat 

Done:=False; 
Regs.Dx:=$0000; { select printer 1 > 
Regs.Ax:=$0200; { request printer status > 
Intr{$17,Regs); 
Test:=((Hi(Regs.Ax) and 128)=128); { printer ready? > 
if not Test then begin 

OldCursor:=CurrentCursor; { save old cursor mode > 
SetCursor(2); { turn the cursor off > 
SaveLines(HSGLINE,1,OldLine); 
WriteHsg(ErrorC,'Printer not ready, A)bort R)etry?'); 
Beep; 
repeat 

Ch:=GetaKey; 
until Ch in [ESC,65,82,97,114]; 
Done:=Ch in [ESC,65,97]; 
RestoreLines(HSGLINE,1,OldLine); 
SetCursor(OldCursor); 

end; 
until ((Done) or (Test)); 
PrinterReady;=Test; 

end; 

function UritePrt(S:string}:boolean; 
{ print and check for errors or user abort > 
const 

PUait = 20000; { 20 second wait for timeout } 
var 

Regs : registers; 
PAbort : boolean; 
Chk ; byte; 
TimeOut : word; 

begin 
if Length(S)=0 then begin 

WritePrt:=True; 
Exit; 
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end; 
PAbort:=ErrorCheckCF8lse); 
while ((Length(S)>0) and (not PAbort)) do begin 
if Keypressed then begin 

Regs.Ax:=SOOOO; { read the keyboard > 
Intr(S16,Regs); 
if Lo(Regs.Ax)=SOO then Chk:=128+Hi(Regs.Ax) 
else Chk;=Lo(Regs.Ax); 
if Chk=ESC then PAbort:= 

GetBooK'Print cancel requested. Ok to stop?'); 
end; 
if not PAbort then begin 

Regs.Dx:=$0000; { select printer 1 > 
Regs.Ax:=0rd(S[1]); { output 1 character > 
Intr($17,Regs); 
Timeout:=0; 
while (((Hi(Regs.Ax) and 128)=0) and 

(TiineOut<PUait)) do begin 
Inc(Timeout); Oelay(l); 
Regs.Dx;=$0000; { select printer 1 > 
Regs.Ax:=$0200; { request printer status > 
Intr(S17,Regs); 

end; 
if Timeout=PWait then PAbort;=(not PrinterReady); 
if not PAbort then Deleters,1,1); 

end; 
end; 
while Keypressed do begin 

Regs.Ax:=S0000; { clear the keyboard, just in case } 
Intr(S16,Regs}; 

end; 
WritePrt:=(not PAbort); 

end; 

function GetListV(X,Y,NI,CV:integer):integer; 
{ allow user to select from vertical list } 
var 
I : integer; 
LI : integer; { longest item ) 
CS : integer; 
OldCursor : byte; 
Ch,Ch1 : byte; 
OkSet : HenuSet; 
Dups : boolean; 
TStr : string[1]; 
Title: string; 

begin 
OldCursor:=CurrentCursor; C save old cursor mode > 
SetCursor(2); { turn the cursor off > 
LI:=0; Dups:=False; 
for I:=0 to Nt do if Length(VList[I])>LI then 

LI :=Length(VList[n); 
Dups:=False; 
OkSet:=n; 
for I:=1 to NI do begin t check for dups } 

TStr;=Copy(VList[I],1,1); Chi;=Ord(Upcase(TStr[1])); 
if (Chi in OkSet) then 0ups:=True 
else begin 

OkSet:=OkSet+[Chi]; 
if Chi in 165..97] then 0kSet:=0kSet+[Ch1+32]; 

end; 
end; 
if Dups then 0kSet:=[l; 
SaveWindoH(X,Y,X+LI+3,Y+NI+3,0ldScreen*); 
T i tle:=CenterStr(VL ist[0],' ',LI); 
MakeBox(X,Y,X+LI+3,Y+NI+3,NormC,3,2,Title); 
for I:=1 to NI do FastUrite(VListtI],Y+2+I,X+2,LowC); 
if not Dups then ChangeScr(X+2,Y+3,X+2,Y+2+HI,NormC); 
CS:=CV; 
repeat { get the response > 

ChangeScr(X+1,Y+2+CS,X+2+LI,Y+2+CS,InvC); 
repeat 

Ch;=GetaKey; 
until Ch in OkSet+[CR,ESC,UP,DOUN]; 
ChangeScr(X+1,Y+2+CS,X+2+LI,Y+2+CS,LOHC); 
if not Dups then ChangeScr(X+2,Y+2+CS,X+2,Y+2+CS,NormC) 
case Ch of 

32..126 : begin 
CS:=1; 
while UpLowStr(Copy(VList[CS],1,1),'U')<> 

Upcase(Chr(Ch)) do Inc(CS); 
Ch;=CR; 

end; 
UP ; if CS>1 then Dec(CS) else CS:=NI; 
DOWN: if CS<NI then Inc(CS) else CS:=1; 

end; 
until (Ch in [CR,ESC]); 
if Ch=ESC then CS:=0; 
RestoreUindoM(OldScreen*); 
SetCursor(OldCursor); 
GetListV:=CS; 

end; 
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function HakeFileNatne(var TFile:Str12):boolean; 
{ try to make a valid file name from string > 
var 
DotCount : integer; 
IsOk : boolean; 
I : integer; 

begin 
IsOk:=True; 
TFile:=StripLeft(TFile,' '); 
if TFileo" then begin { remove blanks > 

while PosC ',TFîle)>0 do Delete(TFile,Pos(' ',TFile),1) 
DotCount:=0; { count dots > 
for I;=1 to Length(TFile) do if TFile[I]='.' then 
Inc(OotCount); 

case DotCount of 
0 : IsOk:=(Length(TFile}<9); 
1 ; IsOk;=((Pos('.*,TFile)<10) and (Pos('.',TFile)>1) 

and ((Length(TFile)-Pos('.',TFile))<4)); 
else IsOk:=False; 

end; 
TFile;=UpLowStr(TFile, 'U'); 

end 
else IsOk:=False; 
if ((not IsOk) and (TFileo")) then 
MsgCIllegal file name (must be XXXXXXXX.XXX form)'); 

MakeFileName:=IsOk; 
end; 

function Key8oard(0kSet:HenuSet; Cursor;byte):byte; 
{ gets a valid keystroke and optionally runs pop-ups > 
var 

Ch : byte; 
OldCursor : byte; 
Regs : registers; 

begin 
OldCursor:=CurrentCursor; 
SetCursor(Cursor); 
repeat 
Ch:=Getakey; 
if not (Ch in OkSet) then Beep; { beep if invalid > 

until (Ch in OkSet); 
KeyBoard:=Ch; 
SetCursor(OldCursor); 

end; 

procedure ShowHenu(Num:byte); 
{ show a menu in menu portion of screen > 

procedure DoMenul; { Main Menu > 
begin 

case Paused of 
True : Commands.Line[1] := 

•MAIN MENU: Clr Delete Enter Load Opt 
Proceed Report Save Update Quit'; 

False : Commands.Line[1] := 
•MAIN MENU: Clr Delete Enter Load Opt 

Pause Report Save Update Quit^; 
end; 
Commands.Line[2] :=• •; 
Commands.Descdl := 

•CLR - Clear data from all objects in the simulation' 
Commands.Desc[2] := 

•DELETE - Delete object instance from current class'; 
Commands.Desc[3] := 

'ENTER - Add new object instance to the current class 
Commands.Desc[4] := 

'LOAD - Load a simulation from disk or create new one 
Commands.OesclS] :-'OPT - Miscellaneous program options 
case Paused of 

True : Commands.Desc [6] := 
'PROCEED - Proceed with the current simulation'; 

False:Co«nmands.Desc[6] :='PAUSE • Pause the simulation 
end; 
Commands.Desc[7] :='REPORT - Print simulation reports'; 
Commands.Desc[8] :='SAVE - Save simulation to disk'; 
Commands.Desc[9] :='UPDATE - Update the current object• 
Conmands.DescllO]:='QUIT - Quit this program^; 

end; 

procedure DoMenul26; { record update > 
begin 

Commands.Lined] :=' '+CLow«-' '+CNorm* 
' '+CLOW+' '+CNorm+'F5'+CLow+ 
'=Prev Record '+CNormf' '+CLow+' 
CNorm*' '+CLOW+' '; 

Commands.Line[2]:=' '+CLow+' '+CNorm» 
• •+CLow+^ •+CNorm+^F6^+CLow+ 
•=Next Record •+CNorm+^F8'+CLow+'=Blank Field 
CNorm«-'F10'+CLow+^=Accept '; 

end; 
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procedure DoHenu127; C record entry > 
begin 
Commands.Lined] : = ' '+CLow*' 'tCNorm*' '+ 
CL0W+' '+CNorm+' '+CLow+ 
• '+CNorm+' '+CLOW*' '+ 
CNorim-' '•CLOW+' 

Commands.Line[2]:=' '+CLow*' '+CNormf' '+ 
CLOW+' '+CNorm+'F6'+CLow+'=Next Record' 
CNorm+'F8'+CLow+'=Blank Field '+ 
CNorm+'F10'+CLow+'=Accept 

end; 

begin 
ScrollWindow(1,MENULINE,80,MENULINE+2,NormC,0); 
case Hum of 

1 : DoMenul; { main menu > 
126: DoMenu126; { update record } 
127: DoHenu127; { enter record > 

end; 
if Num<100 then begin 

WriteCaps(1,23,LowC,NormC,' '•Commands.Line[1]+' '); 
WriteCaps(1,24,LowC,NormC,' '•Commands.Line[2]+' '); 
CmdList:=Niin; 
CurrConinand:=0; 

end 
else begin 

WriteAt(2,MENULINE,Commands.Linell]); 
Uri teAt(2,SuccCHENULINE),Commands.Line[2]); 

end; 
end; 

function DBGetUorkingBuffers(var B1,B2,B3:DBBufPtr):boolean 
{ get buffers to store database records } 
begin 

DBGetUorkingBuffers:=False; 
if HaxAvail<{3*SizeOf(DBBufArray))+HinMem then Exit; 
GetHem(B1,Si zeOf(DBBufArray)); 
GetHem(B2,SizeOf(OBBufArray)); 
GetHe<n(B3, Si zeOf(DBBuf Array)); 
DBGetUork i ngBuffers:=T rue; 

end; 

function DBHakeKey(var FData; DFT:DBField):string; 
{ make a key entry from some type of data } 
var 

T : string absolute FData; 
TStr: string; 
Ext : string; 
Ps : byte; 

begin 
case DFT.FType of 

'A','B','C','E','H','W','Y': begin 
TStr:=HakeStr(FData,DFT.Len.DFT.Oecs,DFT.FType); 
TStr:=UpLowStr(TStr,'U'); 
Ps:=Pos('-',TStr); 
if ((DFT.FType in ['I'.'L'.'R']) and 

(Ps>0)) then begin 
Delete(TStr,Ps,1); 
TStr:=«1+TStr; 

end; 
end; 

'I'.'L'.'R' ; begin 
TStr:=HakeStr(FData,DFT.Len.DFT.Decs,DFT.FType); 
Ps:=Pos('-',TStr); 
if Ps>0 then begin 

Delete(TStr,Ps,1); 
TStr:=#31+ 
PadLeft(StripLeft(TStr,' '),':',Pred(DFT.Len)) 

end; 
end; 

else TStr:=CharStr(' '.DFT.Len); 
end; 
DBMakeKey:=TStr; 

end; 

function DBMakeName(FName:string; FType,OptNum:byte):string; 
{ make a filename: 0-Def, 1-Class > 
begin 

case FType of 
0: DBHakeName:=FName+'.DBD'; 
1 : OBMakeName:=FName+'.C'^BytetoHex(OptNum); 
else DBMakeName:=FName; 

end; 
end; 
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procedure OBGetBuffer(var FData; ObjBufferiDBBufPtr; 
DFT:DBField); 

{ get contents of buffer at defined field } 
begin 

MoveCObjBuffer*[DFT.AOfs],FData,DFT.ALen); 
end; 

procedure DBPutBuffer<var FData; ObjBufferiDBBufPtr; 
DFTrDBField); 

{ put contents into buffer > 
begin 

Hove(FData,ObjBuffer*[DFT.AOfs].DFT.ALen); 
end; 

procedure DBPutFieldDef(var DFT:DBField; 
T i tle:DBT itleStr;FType;char; 
Len,Decs,X,Y,Page,ALen;byte; AOfs:integer; CCase:char; 
Hand,Calc:boolean; KeyTyp:char; OkSet;HenuSet; 
Form:DBFormStr; UTitleiboolean); 

{ put a definition into a DBField > 
begin 

DFT.Title:=Title; OFT.FType:=FType; * 
OFT.Decs:=Decs; 
DFT.Y:=Y; 
DFT.ALen:=Alen; 
DFT.CCase:=CCase; 
DFT.Calc:=Calc; 
DFT.OkSet:=OkSet; 
DFT.WTitle:=UTitle; 

OFT.Len:=Len; 
DFT.X:=X; 
DFT.Page:=Page; 
DFT.AOfs:=AOfs; 
DFT.Hand:=Mand; 
DFT.KType:=KeyTyp; 
DFT.Form:=Form; 

end; 

function DicMandatoryEntryCvar FData; DBT:DBFjeld):boolean 
{ check to see if this field has been entered > 
var 

string absolute FData; A 
B 
C 
I 
R 
U 
Y 

begin 
if not DBT.Hand then DidMandatoryEntry:=True 
else case DBT.FType of 

'A' : DidHandatoryEntry:=(A<>CharStr(' '.DBT.Len)); 
'B','H': DidMandatoryEntry:=(B<>DBBBYTE); 

byte absolute FData 
char absolute FData 
integer absolute FData 
real absolute FData 
word absolute FData 
boolean absolute FData 

•C : DidHandatoryEntry:=(C<>DBBCHAR); 
'E' : DidHandatoryEntry:=(A<>DBBENTRY); 
'P : DidHandatoryEntry:=<I<>DBBINT); 
'R' : DidMandatoryEntry:=(R<>DBBREAL); 
'W ; DidHandatoryEntry:=(U<>DBBWORD); 

end; 
end; 

procedure DBGetField(var FData; var Nextibyte; 
DBT:DBField;GType,SC:byte; 
ExRet:HenuSet); 

{ field input 0=Update only 1=Update 2=Enter 3=Prompted > 
var 

A : string absolute FData; 
B : byte absolute FData; 
C : char absolute FData; 
I : integer absolute FData; 
R : real absolute FData; 
U : word absolute FData; 
Y : boolean absolute FData; 
TStr.TStrl; string; 
Ch.Nd ; byte; 
Ps,LPs,RPs,Mask: word; 
FKeys : HenuSet; 
Formatted, 
ShowStar, 
NotEntered: boolean; 
OldR : real; 
OldDate : stringdO]; 
OldTime : string[6]; 

function Hasked(Ps:word):boolean; 
begin 

Hasked:=(((1 shl Pred(Ps)) and Mask) = (1 shl Pred(Ps))) 
end; 

procedure GetPs(Direction:integer); 
begin 

case Direction of 
-1 : begin { previous position > 

Dec(Ps); 
if Formatted then 

while ((Hasked(Ps)) and (Ps>0)) do Dec(Ps); 
if ((GType=3) and (Ps=0)) then begin 

Inc(Ps); 
while Hasked(Ps) do Inc(Ps); 
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end; 
end; 

1 : begin { next position > 
Inc(Ps); 
if Formatted then 

while ((Masked(Ps)} and 
(Ps<=DBT.Len)) do Inc(Ps); 

if ((GType=3) and (Ps>OBT.Len)) then begin 
Dec(Ps); 
if Formatted then while Hasked(Ps) do Dec(Ps) 

end; 
end; 

end; 
end; 

begin 
TStr:=HakeStr(A,DBT.Len.OBT.Decs,DBT.FType); 
if (DBT.FType in ['B','I','R','U']) then 

TStr:=PadRight(StripLeft(TStr,' '.DBT.Len); 
WriteFast(DBT.X,DBT.Y,SC,TStr); 
Next:=CR; { default > 
Hask:=0; 
Fonnatted:=(Hask<>0); 
ShowStar;={(Lo(GetScrChar((DBT.X-1),DBT.Y)) in 10,32,255]) 

and (GType<>3)); 
if ShowStar then 

WriteFast(Pred(DBT.X),DBT.Y,NorniC+Blink,'*'); 
Ps:=OBT.Len; 
if Formatted then while Hasked(Ps) do Dec(Ps); 
RPs:=Ps; Ps:=1; 
if Formatted then while Hasked(Ps) do Inc(Ps); 
LPs:=Ps; 
FKeys:=[BACK,CR,ESC,LEFT,RIGHT,INSKEY,DELKEY,CTRLLEFT, 

CTRLR IGHTJ+ExRet; 
case Glype of 

0 : FKeys:=FKeys+[F8,F10,UP,PGUP,DOWN,PGDN]; 
1 ; FKeys:=FICeys+[F5,F6,F8,F10,UP,PGUP,DOWN,PGDN]; 
2 ; FKeys:=FKeys+[F6,F8,F10,UP,PGUP,DOUH,PGDN]; 
4 : FKeys:=FKeys+[UP,DOWN]; 

end; 
repeat 
if GType<3 then case InsHode of 

0 : UriteFast(70,HENULlNE.InvC,'Insert Off); 
1 : WriteFast(70,HENULINE,InvC,'Insert On '); 

end; 

GotoXY{DBT.X+Pred(Ps),DBT.Y); 
Ch:=KeyBoard(DBT.OkSet+FKeys,1); 
if Ch in DBT.OkSet then begin 
if ((InsHode=0) or (Formatted) or 

(DBT.FType in t'B','H',«I','R«,'W'])) then 
Delete(TStr,Ps,1) 

else Delete(TStr,Length(TStr),1); 
case DBT.CCase of 

'L': if Ch in [65..90] then Inc(Ch,32); 
'U': if Ch in [97..122] then Dec(Ch,32); 

end; 
Insert(Chr(Ch),TStr,Ps); 
WriteFast(DBT.X,DBT.Y,SC,TStr); 
GetPsd); 

end 
else case Ch of 

BACK : if ((not Formatted) and (Ps>LPs)) then begin 
Dec(Ps); 
Delete(TStr,Ps,1); 
TStr:=TStr+' '; 
UriteFast(OBT.X,DBT.Y,SC,TStr); 

end; 
ESC,F3,F4,F5,F6,F7,F9,F10,UP,DOWN,PGUP,PGON ; Next:=C 
F8 : begin { blank field } 

case DBT.FType of 
'A','N': TStr;=CharStr(' '.DBT.Len); 
'B','P,'W': 

TStr:=PadRight('0',' »,DBT.Len); 
'C : TStr:=0BBCHAR; 
'E' ; TStr:=DBBENTRY; 
'H' : TStr:='00'; 
'R' : TStr:=PadRight('0.0',' ',DBT.Len) 

end; 
WriteFast(DBT.X,DBT.Y,SC,TStr); 
Ps:=LPs; 

end; 
LEFT ; begin { left arrow > 

GetPs(-l); 
if Ps<LPs then Next:=LEFT; 

end; 
RIGHT: GetPs(l); { right arrow > 
DELKEYiif not Formatted then begin { Del } 

Delete(TStr,Ps,1); 
TStr:=TStr+' '; 
WriteFast(DBT,X,DBT.Y,SC,TStr); 

end; 
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CTRLLEFT : Ps:=LPs; { start of line } 
CTRLRIGHT : if not Formatted then begin { end of line > 

Ps:=OBT.Len; 
while ((TStrIPs]=' ') and (Ps>1)) do 

Dec(Ps); 
if ((TStrIPs]<>' ') and (Ps<DBT.Len)) 

then Inc(Ps); 
end 
else Ps:=RPs; 

end; 
until ({Ch in [CR,ESC,F1,F2,F3,F4,F5,F6,F7,F9,F10, 

UP,DOWN,PGUP,PGDN]) or 
(Ps<LPs) or (Ps>RPs)); 

if Next<>ESC then case OBT.FType of 
'A': A:=MakeStr(TStr,OBT.Len,DBT.Oecs,DBT.FType); 
'B': begin 

OldR:=Value(TStr); 
if ((OldR<OBBMin) or (OldR>DBBHax)) then begin 

Hsg('Value out of range (0..255)'); 
Next:=NOKEY; 

end 
else B:=Lo(Round(OldR)); 

end; 
'C: C:=TStr[11; 
'E': A:=PadLeft(StripLeft(TStr,' '),'0',DBT.Len); 
'H': B:=HextoByte(TStr}; 
'I'; begin 

OldR:=Value(TStr); 
if ((OldR<OBIHin) or (OldR>DBIMax)) then begin 

Msg('Value out of range (-32768..32767)'); 
Next:=NOKEY; 

end 
else I:=Round(OldR); 

end; 
'R': begin 

OldR:=R; 
Ps:=0; 
Nd:=0; 
while ((Ps<Length(TStr)) and (Nd<2)) do begin 

Inc(Ps); 
if TStrIPs]='.' then Inc(Nd); 
if Nd>l then 

Delete(TStr,Ps,Length(TStr)-Pred(Ps)); 
end; 
R := Value(TStr); 
RoundIt(R,DBT.Decs); 

TStr1:=MakeStr(R,DBT.Len,DBT.Decs,OBT.FType); 
if Length(TStr1)>DBT.Len then begin 

Hsg('Value entered is out of acceptable range') 
Next;=NOKEY; 
R:=OldR; 

end; 
end; 

'W: begin 
OldR:=Value(TStr); 
if ((OldR<DBUHin) or (OldR>OBUMax)) then begin 

Msg('Value out of range (0..65535)'); 
Next:=NOKEY; 

end 
else U:=Round(OldR); 

end; 
'Y't Y:=(TStr='Y'); 

end; 
if (not (Next in [ESC.NOKEY])) then 

NotEntered:=(not DicMandatoryEntry(A,DBT)) 
else NotEntered:=False; 
if NotEntered then begin 

Hsg('Entry must be made here'); 
Next:=NOKEY; 

end; 
if ShowStar then UriteFast(Pred(DBT.X),DBT.Y,LowC,' '); 
WriteFast(DBT.X,DBT.Y,SC, 

HakeStr(FData,DBT.Len,DBT.Decs.DBT .FType)); 
end; 

function DBGetPrompted(var FData; Promptzstring; FTyperchar; 
X,Y,Len,Decs,Sc:byte; CCase:char; 
OkSet:HenuSet):boolean; 

{ get prompted input from user > 
var 

Olds : array [0..2] of LineArray; 
Oldl : byte; 
DFT : DBField; 
SX ; byte; 
Next : byte; 
I ; byte; 

begin 
SX:=X*Length(Prompt); 
DBPutFieldOef(DFT,' ',FType,Len,Decs,SX,Y,1,D,0,CCase, 

DBNMAND.DBNCALC,DBNKEY,OkSe t,DBBFORH,DBHTITLE); 
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if ((Y in [1,25]) or (X=1)) then begin 
MoveF romScreen(Mem[ScreenAdr:Pred(Y)*160],0lds[0] ,80); 
MakeBox(X,Y,X+Length(Prompt)+Len,Y,NormC,0,0,Prompt); 

end 
else begin 

for I:=0 to 2 do 
HoveFroniScreen(Hefli[ScreenAdr:(Y-2+I)*160] ,OldS[I] ,80); 

MakeBox(X-2,Pred(Y),X+Length(Prompt)+Len+1,Succ(Y), 
Norme, 3,0,Prompt); 

end; 
OldI:=InsHode; 
if InsMode=1 then Meffl[$0000:$0417]:=Heffl[$0000:$0417]-$80; 
DBGetField(FData,Next,DFT,3,SC,EHPTYSET); 
if InsModeoOldl then begin 
if InsMode=0 then Mem[$0000:$0417]:=Mem[$0000:$0417]+$80 
else Meffl[$0000:$0417]:=Hem[$0000:$0417l-$80; 

end; 
if ((Y in [1,25]) or (X=1)) then 

HoveToScreen(OldS[0] ,Meni[ScreenAdr:Pred{Y)*160] ,80) 
else for I:=0 to 2 do 

MoveToScreen(0ldS[I],Mem[ScreenAdr:(Y-2+I)*160],80); 
DBGetPrompted:=(Next<>ESC); 

end; 

procedure OBGetNextField(var FldNim:byte;Next:byte; 
ObjFiDBFieldArray); 

{ get the next field for data entry based on next pointer > 
var 

Done: boolean; 
Direction : byte; 

begin 
if Next=ESC then Exit; 
Done:=False; 
case Next of 

CR,DOWM: repeat 
if ObjF[FldNun]*.Page=0 then FldNum:=1 
else Inc(FldNum); 
Done:=((not ObjF[FldNun]*.Calc) and 

(ObjF[FldNum]*.Page=1»; 
until Done; 

LEFT,UP: repeat 
if FldNuipl then 

while ObjF[Succ(FldHum)] ".PageoO do 
Inc(FldNum) 

else Dec(FldNum); 

Done:=((not ObjFlFldNun]*.Calc) and 
(ObjFlFldNutn] •.Page=1)); 

until Done; 
PGDN,PGUP: ; 

end; 
end; 

function DBLoadDef(FNaine:string; 
ObjBuffer,ObjTBuffer,ObjBBuffer:DBBufPtr; 
ObjF:DBFieldArray; ObjScreen:UindouPtr):boolean 

{ load database definition > 
var 
I : ̂ e; 
DBN : integer; 
SStr: string[DBMaxFldLen]; 
DDFR: DBFileRec; 
DDFV: file of DBFileRec; 
NFlds : byte; 

begin 
DBLoadDef:=False; 
if not FileExist(FName) then begin 

Hsg('Database definition file '+FName+' not found '); 
Exit; 

end; 
NFlds:=0; 
FiUChar(SStr,Succ(DBHaxFldLen),#32); 
Obj Screen*.ULX:=1; 
ObjScreen*.ULY:=Pred(OBHINY); 
ObjScreen*.LRX:=80; 
ObjScreen'.LRY:=Succ(DBHAXY); 
Ass i gn(DDFV,FName); 
Reset(DDFV); 
if ErrorCheck(True) then Exit; 
FillChar(ObjBuffer*,Succ(DBHAXRECLEN),0); 
FillChar(ObjTBuffer",Succ(DBHAXRECLEN>,0); 
while not EOF(DDFV) do begin 

Read(DDFV,DDFR); 
if ErrorCheck(True) then begin 

Close(DDFV); 
Exit; 

end; 
case DDFR.RType of 

0: begin { field definition ) 
Inc(NFlds); 
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Hove(DDFR.FieldDef.Title,ObjFINFlds]*, 
SizeOf(DBFie Id)); 

ObjF[NFlds]*.Title:= 
PadRight{ObjF[HFlds]'.Title,' '.DBTITLELEM); 

case ObjFWFlds]*.FType of 
•A': begin 

SStrtO]:=Chr(ObjF[NFlds] .Len); 
OBPutBuffer(SStr,ObjBuffer,ObjFCNFlds]"); 

end; 
'E'; OBPutBuffer(DBBENTRY,ObjBuffer, 

ObjFWFlds]*); 
end; 

end; 
1: begin < screen line > 

for I:=0 to 79 do case Hi(DDFR.ScrLine.Cont[I]) of 
1 : DDFR.ScrLine.Contll]:= 

Lo(DDFR.ScrLine.Cont[I])+(LowC shl 8); 
2 : DDFR.ScrLine.ConttI];= 

Lo(DDFR.ScrLine.Cont[I])+(NormC shl 8); 
3 : DDFR.ScrLine.ContCI]:= 

Lo(DDFR.ScrLine.Cont[I])+(InvC shl 8); 
end; 
Hove(DDFR.ScrLine.Cont, 

ObjScreen'.AddlDDFR.ScrLine .Line],160); 
end; 

end; 
end; 
Close(DDFV); 
if ErrorCheck(True) then Exit; 
for I:=Succ(NFlds) to DBHAXFIELDS do ObjF[Il*:=ObjFtO]"; 
Hove(ObjBuffer',ObjBBuffer',Succ(DBHAXRECLEN)); 
DBLoadDef:=TRUE; 

end; 

procedure ObjectInit(ObjNum:byte; var ObjScreen:UindowPtr; 
var ObjBuffer,ObjTBuffer,ObjBBuffer:DBBufPtr; 

var ObjFzDBFieldArray); 
var 
I : integer; 
NFlds: byte; 
MemOk: boolean; 

begin 
MemOk:=True; 
I :=0; 
if MaxAvail>SizeOf(WindowArray)+HinHem then 

GetKemCObj Screen,S i zeOf(Ui ndowArray)) 
else MemOk:=False; 
if HemOk then MemOk:= 

DBGetUorkingBuffers(ObjBuffer,ObJTBuffer,ObjBBuffer); 
if HenOk then begin 

I;=0; 
while ((I<=DBHAXFIELOS) and (MemOk)) do begin 
if MaxAvail>SizeOf(DBField)+MinMem then 

GetMem(ObjF[I],SizeOf(DBField)) 
else MemOk:=False; 
Inc(I); 

end; 
end; 
if not HemOk then begin 

MsgCInsufficient memory to run program'); 
Halt; 

end; 
with ObJFtO]* do begin 

Title = CharStrC ',10) 
FType = DBBCHAR; 
Len = DBBBYTE; 
Decs = DBBBYTE; 
X = DBBBYTE; 
Y = DBBBYTE; 
Page = DBBBYTE; 
ALen = DBBBYTE; 
AOfs = DBBINT; 
CCase = DBUPLOU; 
Hand = DBNHAND; 
Calc = DBNCALC; 
KType = DBNKEY; 
OkSet 

=  • ;  

Form = DBBFORH; 
end; 
if not DBLoadDef(DBMakeName(CLSNAMES[ObjNum],0,0), 

ObjBuffer.ObjTBuff er,ObJBBuffer,ObjF,ObjScreen) then 
Halt; 

end; 

function NextCompTime(Inst: InstType); real; 
{ return the next time for a completion message > SiraClock > 
var 

TPtr : HsgPacketPtr; 
begin 

NextCompT ime:=S i mCIock+ROUNDFACT; 
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TPtr:=FirstMsg; 
if TPtr=nil then Exit; 
while TPtronil do begin 

if ((TPtr'.Clock>=SiinClock) and 
(TPtr*.Hessage=SO_COHPLETE) and 
(TPtr'.FromInst=Inst)) then begin 

NextCoapTime:=TPtr'.Clock; 
Exit; 

end; 
TPtr:=TPtr .Next; 

end; 
end; 

procedure SencMsg(Fro(nCls:byte;FroaiInst:InstType; ToCls:byte; 
ToInst;InstType; Hessage:HsgType; 
Number,Clock:real); 

{ send a Message > 
var 

HsgPacket : HsgPacketPtr; 
TPtr : HsgPacketPtr; 
LPtr : HsgPacketPtr; 
Done : boolean; 
HsgNum : byte; 

begin 
if MaxAvail<SizeOf(MsgPacketType)*MinMem then begin 

HsgCInsufficient memory for message queue'); 
Halt; 

end; 
GetHem(HsgPacket,S i zeOf(HsgPacketType)); 
HsgPacket .FromCls:=FromCls; 
HsgPacket *.From!nst;=F rominst; 
HsgPacket'.ToC1s:=ToCIs; 
HsgPacket*.Toinst:=ToInst; 
HsgPacket *.Hessage:=Hessage; 
HsgPacket".Number:=Number; 
HsgPacket*.Clock:=Clock; 
if SStep then begin C display message ) 

HsgNum:=Ord(HsgPacket".Hessage); 
UriteHsgCNormC, 
•Send: '+ClsNames[HsgPacket .FromCls]* 

'•HsgPacket'.Fro(nInst+ 
' to '•ClsHames[HsgPacket".ToClsl+','+HsgPacket*.ToInst+ 
' "'+SoopMsgs[HsgNum]" '+ 
MakeStr(HsgPacket.Number,0,2,'R')+','+ 
HakeStr(HsgPac kef .Clock,0,2,'R')); 

if GetAKeyoQ then ; 
end; 
C determine where message fits in message queue } 
{ the new message should be after equal clock time > 
Inc(HsgCount); 
WriteAt(60,1,CHead+HakeStr(HsgCount,5,0,'W')) ; 
HsgPacket'.Hext:=FirstHsg; ( start as new first message } 
if FirstMsg=nil then begin i this is the only message } 

F i rstHsg:=MsgPacket; 
Exit; 

end; 
if HsgPacket .Clock<FirstMsg'.Clock then begin { first > 

HsgPacket".Next:=F i rstHsg; 
F i rstHsg:=HsgPacket; 
Exit; 

end; 
Done:=False; 
TPtr:=FirstHsg; C point to first message > 
LPtr:=TPtr; 
while (not Done) do begin ( find appropriate position } 

HsgPacket".Next:=TPtr*.Next; 
TPtr".Next:=HsgPacket; 
if TPtroFirstHsg then LPtr .Next:=TPtr; 
Done:=(HsgPacket'.Next=nil); 
if not Done then begin 
LPtr:=TPtr; 
TPtr:=HsgPacket".Next; 
Done:=(HsgPacket".Clock<TPtr".Clock); 

end; 
end; 

end; 

end. 
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unit SOOPENT; 
{ Entity object unit > 

{$1 COHPDIRS.PAS) 

interface 

uses S00PGEN,S00PGEN1; 

procedure EntClass(HsgPacket:HsgPacketType); 
{ interface to the outside world > 

implementation 

const 
ObjNim = ENTITY; 

type 
ObjRecPtr 
ObjRec 

'ObjRec; 
record { object record > 

Status 
Instance 
TypeCode 
CurrLoc 
CreateTime 
StartTime 
TimelnSys 
UillFail 
Next 
Prev 

end; 

longint; 
InstType; 
real; 
InstType; 
real; 
real; 
real; 
boolean; 
ObjRecPtr; 
ObjRecPtr; 

F i rstObj,CurrObj,LastObj,TPtr 
ObjScreen 
ObjF 
ObjBuffer 
ObjBBuffer 
ObjTBuffer 
ObjSize 
MOata 
LastOisp 

: UindowPtr; { 
: DBFieldArray; { 
: DBBufPtr; { 
: DBBufPtr; t 
: DBBufPtr; { 
: word; { 
: HsgPacketType; { 
: pointer; ( 

I ObjRecPtr; 
object screen ) 
field defs ) 
buffer for object > 
blank buffer for object > 
temp buffer for object ) 
size of this object > 
working message > 
last displayed object } 

procedure ShowObject; 
{ show current object > 
var 

FData : DBFOataArray; 
FldNum: byte; 

begin 
if CurrClsoObjNum then begin 

if (not SStep) then Exit; 
CurrCls:=ObjNutn; 

end; 
if ((not SStep) and (CurrObjoLastDisp) and (not Paused)) 

then Exit; 
RestoreWindow(ObjScreen'); 
FldNum:=1; 
while ObjF[FlcMum]*.Page=1 do begin 

DBGetBuf f er( FData,ObjBuffer,Obj F [F IdNun] * ); 
with (AjFCFldNiW do 

UriteFast(X,Y,InvC,HakeStr(FData,Len,Decs,FType)); 
Inc(FldNum); 

end; 
LastDi sp:=CurrObj; 

end; 

procedure PutObjInBuffer; 
{ put the Current object in the display buffer > 
begin 

if CurrObjonil then Hove(CurrObj*,ObjBuffer*,ObiSize) 
else Hove(ObjBBuffer",ObjBuffer*,ObjSize); 

end; 

procedure ClearCurrObject; 
{ clear data from object > 
var 

FData : DBFDataArray; 
FldNum: byte; 

begin 
FldNum:=1; 
while Obj F[FIdNum]'.Page=1 do begin 

if StripLeft(StripRight(ObjF[FldNum]-.Form,' '),' 
')='BLANK' then begin 
DBGetBuffer(FData,ObjBBuffer,ObjF [FldNun] "); 
OBPutBuffer(FData,ObjBuffer,ObjF[FldNum]*); 

end; 
Inc(FldNum); 

end; 
end; 
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function DeleteCurrCbject:boolean; 
begin 

DeleteCurrObject:=False; 
if CurrObj=nil then Exit; 
TPtr:=CurrObj; 
if FirstObj=TPtP then FirstObj:=FirstObj*.Next; 
if LastObj=TPtr then LastObj:=LastObj*.Prev; 
if CurrObj'.Prevonil then CurrObj:=CurrObj*.Prev 
else if CurrObj'.Nextonil then CurrObj;=CurrObj".Kext 
else CurrObj;=nil; 
if TPtr'.Prevonil then TPtr".Prev".Next:=TPtr".Next; 
if TPtr".Next<>nil then TPtr".Next".Prev:=TPtr*.Prev; 
Oispose(TPtr); 
PutObjlnBuffer; 
DeleteCurrObj ect:=True; 

end; 

function GetNewObject:boolean; 
{ allocate a new object and add to end of linked list > 
var 

TStr : InstType; 
TReal: real; 
Code : integer; 

begin 
GetNewObject:=False; 
if HaxAvail<SizeOf(ObjRec)+HinHem then Exit; 
GetHem(TPtr,SizeOf(ObjRec)); 
TPtr".Prev:=LastObj; 
TPtr .Next:=nil; 
if TPtr'.Prevonil then TPtr .Prev .Next:=TPtr; 
CurrObj:=TPtr; 
LastObj:=TPtr; 
if FirstObj=nil then FirstObj:=TPtr; 
Hove(Obj BBuffer",CurrObj',Obj Size); 
if CurrObj .Prev=nil then CurrObj".Instance:=' 1' 
else begin 

TReal:=Value(CurrObj".Prev".Instance)+1.0; 
CurrObj".Instance:=HakeStr(TRea1,5,0,'R'); 

end; 
GetNeuObj ect:=T rue; 

end; 

function GetNextObject:boolean; 
{ get the next object } 
begin 

GetNextObj ect:=FaIse; 
if CurrObj=nil then Exit; 
if CurrObj'.Next=niI then Exit; 
CurrObj :=CurrObj .Next; 
PutObjlnBuffer; 
GetNextObj ect:=T rue; 

end; 

function GetPrevObject:boolean; 
{ get the previous object > 
begin 

GetPrevObject:=False; 
if CurrObj=nil then Exit; 
if CurrObj".Prev=niI then Exit; 
CurrObj:=CurrObj *.Prev; 
PutObjlnBuffer; 
GetPrevObj ect:=T rue; 

end; 

I procedure ClearAllObjects; ^ 
{ clear all objects (note: this is special for entities) > 
begin 

while OeleteCurrObject do; 
end; 

procedure LoadObjects; 
{ load simulation objects from disk > 
var 

TObj : ObjRec; 
ObF : file of ObjRec; 

begin 
{ delete current objects from memory } 
while OeleteCurrObject do ; 
( read objects from disk file if the file exists > 
if not FileExist(DBHakeName(SinMame,1,0bjNum)) then Exit; 
Assi gnCObF,DBHakeHame(S i mName,1,ObjNun)); 
Reset(ObF); 
while (not EOF(ObF)) do begin 

Read(ObF,TObj); 
if not GetNewObject then begin 
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Close(ObF); 
HsgCInsufificient memory to load simulation'); 
Halt; 

end; 
Hove(TObj,CurrObj",ObjSize); 

end; 
Close(ObF); 
CurrObj:=FirstObj; 
PutObjInBuffer; 
ShouObject; 

end; 

procedure SaveObjects; 
{ save simulation objects to disk } 
var 

ObF : file of ObjRec; 
begin 

{ save objects to disk file > 
TPtr:=FirstObj; 
Assign(0bF,DBMakeName(SimName,1,0bjNum)); 
Rewrite(ObF); 

. while TPtronil do begin 
Urite{ObF,TPtr*); 
TPtr:=TPtr".Next; 

end; 
Close(ObF); 

end; 

function PointTo(Inst;InstType):ObjRecPtr; 
{ point to the indicated instance > 
var 

TPtr ; ObjRecPtr; 
begin 

PointTo:=nil; 
if FirstObj=nil then Exit; 
TPtr;=FirstObj; 
while TPtronil do begin 

if TPtr*.Instance=Inst then begin 
PointTo:=TPtr; 
Exit; 

end; 
TPtr:=TPtr*.Next; 

end; 
end; 

procedure GenerateArrival; 
{ generate an arrival of an entity } 
begin 

{ create a new entity > 
if not GetNewObject then Exit; 
{ mark Instance id, arrival time, type code, status > 
CurrObj*.TypeCode:=MOata.Number; 
CurrObj".CreateTime;=HOata.Clock; 
PutObjInBuffer; 
ShowObject; 
{ request routing for self: "Where do I go?" > 
SendMsg(ENTITY,TPtr.Instance,ROUTING,TPtr".CurrLoc, 

GET_NEXT_RTE,TPTr*.TypeCode,SimClock); 
{ generate next arrival of self > 
SendHsgCENTITY,NINST,ROUTING,NINST,GEN_ARR_TIHE, 

TPtr .TypeC ode,SimClock); 
end; 

procedure RequestServQueGranted; 
C request for service/queue was granted, move entity to new 
location > 
begin 

TPtr:=PointTo(HData.ToInst); 
if TPtr=nil then Exit; 

{ send message to prior location that entity is leaving } 
SendMsg(ENTITY,TPtr'.Instance,SERVQUE,TPtr'.CurrLoc, 

ENTITY_LEAVE_SQ,SimClock-TPtr'.StartTime,SimClock); 

{ set service failure flag off } 
TPtr'.UillFail:=False; 

{ set current location } 
TPtr *.CurrLoc;=HData.F rominst; 

{ set current location start time } 
TPtr*.StartTime:=SiinClock; 
CurrObj;=TPtr; 
PutObjInBuffer; 
ShowObject; 
{ send return message to indicate that entity is moved and 

completion should be scheduled } 
SendMsg(ENTITY,TPtr'.Instance,ROUTING,TPtr'.CurrLoc, 

SCH_SO_COHP,TPtr'.TypeCode.SimClock); 
end; 



www.manaraa.com

procedure RequestServQueDenied; 
{ request for service/queue was denied, attempt to 

reschedule/reroute > 
begin 

TPtr:=PointTo(MOata.ToInst); 
if TPtr=nil then Exit; 
CurrObj:=TPtr; 
PutObjlnBuffer; 
ShoHObject; 
if TPtr'.WillFail then begin { entity destined to fail > 

SendMsg(ENTITY,TPtr'.Instance,ROUTING,TPtr'.CurrLoc, 
GET_FAIL_RTRY,TPTr*.TypeCode,SimClock); 

end 
else begin { request alternate routing for entity > 

SendHsg(EHTITY,TPtr*.Instance,ROUTING,TPtr*.CurrLoc, 
GET_ALT_RTE,TPTr*.TypeCode,SimCIock); 

end; 
end; 

procedure ServQueConplete; 
{ service/queue completed, need next route > 
begin 

TPtr:=PointTo(HData.ToInst); 
if TPtr=nil then Exit; 
CurrObj;=TPtr; 
PutObjlnBuffer; 
ShowObject; 
if TPtr'.WillFail then begin i entity destined to fail > 

SendHsg(ENTITY,TPtrMnstance,ROUTING,TPtr".CurrLoc, 
GET_FAIL_RTE,TPTr*.TypeCode,SiinClock); 

end 
else begin C send return message requesting next route } 

SendMsg(ENTITY,TPtr'.Instance,ROUTING,TPtr'.CurrLoc, 
GET_NEXT_RTE,TPtr*.TypeCode.SiinClock); 

end; 
end; 

procedure SetFail(Fail:boolean); 
{ set entity fail service flag ) 
begin 

TPtr:=PointTo(HData.ToInst); 
if TPtr=nil then Exit; 
TPtr'.WillFail:=FaiI ; 
CurrObj:=TPtr; PutObjlnBuffer; ShowObject; 

end; 

procedure LeaveSystem; 
{ entity leaves simulation > 
begin 

TPtr:=PointTo(HData.ToInst); 
if TPtr=nil then Exit; 
{ send message to prior location that entity is leaving > 
SendHsg(ENTITY,TPtr'.Instance,SERVOUE.TPtr'.CurrLoc, 

ENTITY_LEAVE_SQ,SimClock-TPtr".StartTiroe,SimClock); 
TPtr'.CurrLoc:=NINST; 
TPtr'.TimeInSys:=SimClock-TPtr'.CreateTime; 
CurrObj:=TPtr; PutObjlnBuffer; ShowObject; 
{ send message indicating entity throughput > 
SendMsg(ENTITY,TPtr-.Instance,SIHULATE,NINST,ENTITY_DEP, 

TPtr'.TiraeInSys,SimClock); 
{ delete the entity, no longer needed > 
if OeleteCurrObject then; 

end; 

procedure EntClass(HsgPacket:MsgPacketType); 
{ interface to the outside world > 
begin 

HData:=HsgPacket; 
case HOata.Message of ^ 

CLEAR_OBJ : ClearAllObjects; e\ 
DELETEjOBJ : if OeleteCurrObject then ShowObject; ^ 
LOAO_OBJ : LoadObjects; 
SAVE OBJ : SaveObjects; 
SHOW'CURR OBJ : ShowObject; 
SHOU'_NEXT~OBJ : if GetNextObject then ShowObject; 
SHOW~PREV~OBJ : if GetPrevObject then ShowObject; 
GEN_ÂRRIVÂL : GenerateArrival; 
REQ~SQ_GRANTED: RequestServQueGranted; 
REQ SO DENIED : RequestServQueDenied; 
ENTTTY~SQ COMP: ServQueComplete; 
ENTITY_SET FAILtSetFai UTrue); 
ENTITY_NO_FAIL: SetFail(False); 
LEAVE_SYS : LeaveSystem; 

end; 
end; 

begin 
0bjSize:=Size0f(0bjRec)-8; { subtract 8 for pointers > 
FirstObj:=nil; CurrObj:=nil; LastObj:=nil; LastDisp:=nil; 
ObjectInit(ObjNum,ObjScreen,ObjBuffer,ObjTBuf fer,ObjBBuffer 

.ObjF); 
end. 
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unit SOOPRTE; 
{ Routing object unit > 

{$I COHPDIRS.PAS> 

interface 

uses S00PGEN,S00PGEN1; 

procedure RteClass(MsgPacket:MsgPacketType); 
{ interface to the outside world > 

implementation 

const 
ObjNun = ROUTING; 

const 
Dists:array [1..3] of InstType= ('UHFRH'.'EXPON'.'NORHL') 

type 
ObjRecPtr = "ObjRec; 
ObjRec = record { object record > 

Status 
Instance 
Desc 
EntType 
CurrLoc 
Dist 
Mean 
Std 
FaiIPerc 
FailTo 
NextLoc 
BalkLoc 
Next 
Prev 

end; 

longint; 
InstType; 
string [25]; 
real; 
InstType; 
InstType; 
real; 
real; 
real; 
InstType; 
InstType; 
InstType; 
ObjRecPtr; 
ObjRecPtr; 

F1rstObj.CurrObj,LastObj,TPtr 
ObjScreen 
ObjF 
ObjBuffer 
ObjBBuffer 
ObjTBuffer 
ObjSize 
HData 
LastDisp 

: UindowPtr; { 
: DBFieldArray; { 
: DBBufPtr; { 
: DBBufPtr; { 
: DBBufPtr; { 
: word; { 
: HsgPacketType; { 
: pointer; { 

I ObjRecPtr; 
object screen > 
field defs > 
buffer for object } 
blank buffer for object > 
temp buffer for object > 
size of this object > 
working message } 
last displayed object } 

procedure ShowObject; 
{ show current object > 
var 

FData : DBFOataArray; 
FldNum: byte; 

begin 
if CurrClsoObjNum then begin 

if (not SStep) then Exit; 
CurrCls:=ObjNum; 

end; 
if ((not SStep) and (CurrObjoLastDisp) and (not Paused)) 

then Exit; 
RestoreWindow(ObjScreen'); 
FldNum:=1; 
while ObjF[FldNum]'.Page=1 do begin 

DBGetBuffer(FData,ObjBuffer,ObjFtFldNum]'); 
with ObjFtFldNun]" do 

WriteFast(X,Y,InvC,HakeStr(FData,Len,Oecs,FType)); 
Inc(FldNum); 

end; 
LastDisp:=CurrObj; 

end; 

procedure PutObjInBuffer; 
{ put the Current object in the display buffer > 
begin 
if CurrObjonil then Nove(CurrObj*,ObjBuffer',ObjSize) 
else Hove(ObjBBuffer",ObjBuffer",ObjSize); 

end; 

procedure ClearCurrObject; 
{ clear data from object > 
var 

FData : DBFDataArray; 
FldNum: byte; 

begin 
FldNum:=1; 
while ObjFCFldNun]'.Page=1 do begin 
if Stripleft(StripRight(ObjF[FldNun*]'.Form,' •), 

' ')='BLANK' then begin 
DBGetBuffer(FData,ObjBBuffer,ObjF[FldNum]*); 
DBPutBuffer(FData,ObjBuffer,Obj F[FldNum]'); 

end; 
Inc(FldNum); 

end; 
end; 
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function DeleteCurrObject:boolean; 
begin 

DeleteCurrObject:=False; 
if CurrObJ=nil then Exit; 
TPtr:=CurrObj; 
if FirstObj=TPtr then FirstObj:=FirstObj*.Next; 
if LastObj=TPtr then LastObj:=LastObj*.Prev; 
if CurrObj'.Prevonil then CurrObj:=CurrObj*.Prev 
else if CurrObj'.Nextonil then CurrObj:=CurrObj*.Next 
else CurrObj:=nil; 
if TPtr'.Prevonil then TPtr*.Prev".Next:=TPtr".Mext; 
if TPtr'.Nextonil then TPtr".Next'.Prev:=TPtr".Prev; 
DisposedPtr); 
PutObjInBuffer; 
DeleteCurrObj ect:=T rue; 

end; 

function GetNeuObject:boolean; 
{ allocate a new object and add to end of linked list } 
begin 

GetNewObject:=False; 
if MaxAvail<SizeOf(ObjRec)+HinHein then Exit; 
GetHein(TPtr,SizeOf(ObjRec)); 
TPtr'.Prev:=LastObJ; 
TPtr'.Next;=nil; 
if TPtr'.Prevonil then TPtr".Prev*.Next:=TPtr; 
CurrObj:=TPtr; 
LastObj:=TPtr; 
if FirstObj=nil then FirstObJ:=TPtr; 
Hove(Obj BBuffer*,CurrObj *,Obj Size); 
GetNeuObj ect:=T rue; 

end; 

function GetNextObJect:boolean; 
{ get the next object > 
begin 

GetNextObject:=False; 
if CurrObj=nil then Exit; 
if CurrObj'.Next=niI then Exit; 
CurrObj:=CurrObj *.Next; 
PutObjInBuffer; 
GetNextObject:=T rue; 

end; 

function GetPrevObject:boolean; 
{ get the previous object } 
begin 

GetPrevObject:=FaIse; 
if CurrObj=nil then Exit; 
if CurrObj'.Prev=niI then Exit; 
CurrObj:=CurrObj .Prev; 
PutObjInBuffer; 
GetPrevObj ect:=T rue; 

end; 

procedure GetObject(RType:byte); 
{ enter or update an object > 
var 

FData : DBFDataArray; 
Fin : boolean; 
FldNum : byte; 
FFld : byte; 
Next : byte; 

begin 
if ((RType=1) and (CurrObj=nil)) then Exit; 
Next:=CR; 
FldNura:=1; 
Fin:=True; 
while ObjFCFldNum]'.Calc do Inc(FldNum); 
FFld:=FldNum; 
ShowHenuCRType+125); 
repeat 

Fin:=False; 
Hove(ObjBuffer*,ObjTBuffer",ObjSize); 
if RType = 2 then begin 

Move(ObjBBuffer',ObjBuffer*,ObjS{ze); 
if not GetNewObject then Next:=ESC; 

end; 
FldNum:=FFld; 
ShowObject; 
if NextoESC then repeat 

DBGetBuffer(FOata,ObjBuffer,ObjF[FldNiin] '); 
DBGetF i eld(FData,Next,Obj F[FIdNum]*,RType,InvC, 

EHPTYSET ); 
DBPutBuffer(FData,ObjBuffer,ObjF[FldNum] *); 
DBGetNext F i eld{FIdMun,Next,Obj F >; 

until Next in [ESC,F5,F6,F10]; 
Fin:=(Next in CESC.FIO]); 
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case Next of 
ESC: begin { abort > 

Hove(ObjTBuffer",ObjBuffer',ObjSize); 
if RType=2 then if DeleteCurrObject then ; 

end; 
F5 : begin { previous object > 

Hove(Obj Buffer *,CurrObj *,ObjS i ze); 
if not GetPrevObject then ; 

end; 
F6 : begin { next object > 

Hove(Obj Buffer *,CurrObj",Obj Size); 
if RType=1 then if not GetNextObject then ; 

end; 
F10: Hove(ObjBuffer*,CurrObj*,ObjSize); 

end; 
ShouObject; 

until Fin; 
ShowMenu(CmdList); 
if HilightCommandCO) then ; 

end; 

procedure ClearAllObjects; 
( clear data from all objects > 
begin 

TPtr:=FirstObj; 
while TPtronil do begin 

ClearCurrObject; 
TPtr:=TPtr .Next; 

end; 
end; 

procedure LoadObjects; 
{ load simulation objects from disk } 
var 

TObj : ObjRec; 
ObF : file of ObjRec; 

begin 
{ delete current objects from memory } 
while DeleteCurrObject do ; 
( read objects from disk file if the file exists > 
if not FileExist(DBHakeName(SimName,1,0bjNum)) then Exit 
Assign(0bF,DBMakeName(SimName,1,0bjNum)); 
Reset(ObF); 

while (not EOF(ObF)) do begin 
Read(ObF,TObj); 
if not GetNewObject then begin 

Close(ObF); 
HsgCInsufficient memory to load simulation'); Halt; 

end; 
Move(TObj,CurrObj",ObjSize); 

end; 
Close(ObF); 
CurrObj:=FirstObj; PutObjInBuffer; ShowObject; 

end; 

procedure SaveOfojects; 
{ save simulation objects to disk > 
var 

ObF : file of ObjRec; 
begin 

{ save objects to disk file > 
TPtr;=FirstObj; 
Assign(0bF,DBHakeName($inMame,1,0bjNum)); 
Rewrite(ObF); 
while TPtronil do begin 

Write(ObF,TPtr); 
TPtr:=TPtr .Next; 

end; 
Close(ObF); 

end; 

function PointTo(CurrLoc:InstType; EntType:real):ObjRecPtr; 
{ point to the routing record with the indicated current 

location and entity class } 
var 

TPtr : ObjRecPtr; 
begin 

PointTo:=nil; 
if FirstObj=nil then Exit; 
TPtr:=FirstObj; 
while TPtronil do begin 
if <(TPtr".CurrLoc=CurrLoc) and ((TPtr*.EntType=EntType) 

or (EntType=0.0))) then begin 
PointTo;=TPtr; 
Exit; 

end; 
TPtr:=TPtr .Next; 

end; 
end; 
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function GetDistNuii>er(Oist:InstType; Mean,StcDev:real):real 
{ generate a number from the indicated distribution > 
var 

DNum : byte; 
Found: boolean; 

function SampleNorm:real; 
{ get a sample from a standard normal distribution > 
const 

{ normal table sample (Schriber GPSS text p263} > 
NormTablel : array [1..25] of real = 

(0.0,0.00003,0.00135,0.00621,0.02275,0.06681,0.11507, 
0.15866,0.21186,0.27425,0.34458,0,42074,0.5,0.57926, 
0.65542,0.72575,0.78814,0. 84134,0.88493,0.93319, 
0.97725,0.99379,0.99865,0.99997,1.0); 

NormTable2 : array [1..25] of real = 
(-5.0,-4.0,-3.0,-2.5,-2.0,-1.5,-1.2,-1.0,-0.8,-0.6, 
-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,1.2,1.5,2.0,2.5, 
3.0,4,0,5.0); 

var 
RNum : real; 

begin 
fcNun:=Randora; { get a random number > 
DNum:=1; 
while RNun>=NormTable1 [Succ(DNuni}] do begin 

Inc(DNum); 
if DNum=25 then begin 

SampleNorm:=NormTable1[DNum]; 
Exit; 

end; 
end; 
SampleNorm:=NormTable1 [ONun] ; 

end; 

begin 
Get0istNumber;=0.0; 
DNum:=0; 
Found:=False; 
{ find the correct distribution ) 
while ((DHum<MaxDist) and (not Found)) do begin 

Inc(DNum); 
Found:=(Dists[DNum]=Oist); 

end; 
if not Found then Exit; 

case DNum of 
1 : begin { uniform (std dev is used as range) > 

GetDistNumber:= (Hean-StdDev)+(Random * StdDev*2); 
end; 

2 : begin { exponential (p163 of Schriber GPSS text) > 
GetDistNumber:= Mean * (-1.0 * ln(1-Random)) 

end; 
3 : begin { normal (see p262 of Schriber GPSS text) } 

GetDistNumber:= (StdDev * SampleNorm) + Mean; 
end; 

end; 
end; 

procedure GenerateArrivalTime; 
{ determine which arrivals to generate & when (entity types 

if Number=0,0) ) 
var 

ATime ; real; 
Found : boolean; 

begin 
{ find first route for the desired entity instance & type > 
TPtr:=PointTo(NINST,MDat8.Number); ^ 
while TPtronil do begin ON 

CurrObj:=TPtr; { display the object for reference > 
PutObjInBuffer; 
ShouObject; 
{ generate arrival time (offset by simulation clock) > 
ATime:=GetDistNumber(TPtr*.Dist,TPtr*.Mean,TPtr".Std); 
{ send message indicating entity should be generated > 
SendMsg(ROUTING,NINST,ENTITY,NINST,GEN_ARRIVAL, 

TPtr'.EntType,MData.Clock+ATime); 
{ generate additional arrivals if desired > 
if MData.NimberoQ.G then Exit; 
repeat 

TPtr:=TPtr".Next; 
if TPtronil then Found:=(TPtr*.CurrLoc=NINST); 

until ((TPtr=nil) or (Found)); 
end; 

end; 
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procedure GetNextRoute(RouteCode:byte); 
{ get next routing for entity and send appropriate messages } 
{ RouteCode: 0 - Get primary next location } 
{ 1 - Get alternate route after primary denial > 
{ 2 - Get fail route after failure of service > 
{ 3 - Retry getting fail route after denial } 
begin 
{ find the first route for desired entity instance & type > 
TPtr:=PointTo(MData.ToInst,MOata.Number); 
if TPtr=nil then Exit; 
LurrObj:=TPtr; PutObjInBuffer; ShowObject; 
{ if next location is blank, leave, else request entry > 
if (((TPtr .NextLoc=NINST) and (RouteCode in [0,1])) or 

((TPtr".FailTo=NINST) and (RouteCode in [2,3]))) then 
SendMsg(ROUTlNG,NINST,ENTITY,MData.From!nst,UEAVE_SYS, 

0.0,SimClock) 
else case RouteCode of 

0 : begin { no prior denials, try first location > 
if TPtr*.BalkLoc=NINST then 

SendHsg(ENTITY,MData.FromInst,SERVQUE, 
TPtr*.NextLoc,RE0_SQ_ENTRY,0.0,SimClock) 

else SendHsg(ENTITY,MData.Fromlnst,SERVQUE, 
TPtr*.NextLoc,REQ_SQ_ENTRY,1.O.SimClock) 

end; 
1 : if TPtr".BalkLoc=NINST then begin 

{ prior request failed, retry route with clock 
incremented to next completion time } 

SendHsg(ENTITY,HData.FromInst,SERVQUE, 
TPtr".NextLoc,REQ_SQ_ENTRY,0.0,SimClock); 

end 
else begin { request denied, try alternate route } 

SendHsg{ENTITY,MData.Fromlnst,SERVQUE, 
TPtr".BalkLoc,REQ_SQ_ENTRY,0.0,SimClock); 

end; 
2 ; begin { service failed, request failure route > 

SendHsg{ENTITY,MData.From!nst,SERVQUE,TPtr*.FailTo, 
REQ_SQ_ENTRY,D.0,S imCIock); 

end; 
3 : begin ( service failed, request failure route 

repeated (reasoning like type 1) } 
SendHsg{ENTITY,MData.Fromlnst,SERVQUE,TPtr*.FailTo, 

REO_SQ_EHTRY,0.O.SimClock); 
end; 

end; 
end; 

procedure ScheduleSrvQueCompletion; 
{ schedule service/queue completion > 
var ATime : real; 
begin 

TPtr:=PointTo(MData.ToInst,MData.Number); 
if TPtr=nil then Exit; 
CurrObj;=TPtr; PutObjInBuffer; 
ShowObject; 
ATime;=GetDistHumber(TPtr*.Dist,TPtr*.Hean,TPtr*.Std)+ 

SimClock; 
if GetDistNumberCUNFRM',50.0,50.0) < TPtr .FailPerc then 

SendHsg(RaUTING,NINST,ENTITY,H)ata.Fromlnst, 
ENTITY SET FAIL,0.0,ATime); 

SendMsg(RoGTING,HData.FromInst,SERVQUE,TPtr*.CurrLoc, 
SO_COHPLETE,0.0,ATime); 

end; 

procedure RteClass(HsgPacket:MsgPacketType); 
{ interface to the outside world > 
begin 

MData:=HsgPacket; 
case MData.Message of 

CLEAR OBJ ClearAllObjects; 
DELETE OBJ if DeleteCurrObject then ShowObject 
ENTER OBJ GetObject(2); 
LOAD OBJ LoadObjects; 
SAVE"OBJ SaveObjects; 
SHOW CURR OBJ ShowObject; 
SHOW NEXT OBJ if GetNextObject then ShowObject; 
SHOW PREV OBJ if GetPrevObject then ShowObject; 
UPDATE OBJ GetObjectd); 
GEN ARR TIME GenerateArrivalTime; 
GET~NEXT RTE GetNextRoute(O); 
GET ALT RTE GetNextRoute(l); 
GET FAIL RTE GetNextRoute(2); 
GET FAIL RTRY GetNextRoute(3); 
SCH SQ CÔMP ScheduleSrvQueCompletion; 

end; 
end; 

begin 
ObjSize:=SizeOf(ObjRec)-8; { subtract 8 for pointers } 
FirstObj:=nil; CurrObj:=nil; LastObj:=nil; LastDisp:=nil; 
ObjectInit(ObjNun,ObjScreen,ObjBuffer,ObjTBuffer, 

ObjBBuffer,ObjF); 
end. 
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unit SOOPSIH; 
{ Simulation object unit > 

{$1 COHPDIRS.PAS> 

interface 

uses SOOPGEN.SOOPGENI; 

procedure SiinClass(HsgPacket:HsgPacketType); 
{ interface to the outside world > 

implementation 

const 
ObjNutn = SIMULATE; 

type 
ObjRecPtr = 'ObjRec; 
ObjRec = record { object record > 

Status : longint; 
Instance : InstType; 
Oesc : string[25]; 
HaxTime : real; 
CurrTime : real; 
CurrQty : real; 
HinTInSys ; real; 
HaxTInSys : real; 
AvgTInSys : real; 
Next : ObjRecPtr; 
Prev ; ObjRecPtr; 

end; 

var 
FirstObj,CurrObj,LastObj,TPtr : ObjRecPtr; 
ObjScreen : UindowPtr; { object screen } 
ObjF : DBFieldArray; t field defs ) 
ObjBuffer : DBBufPtr; { buffer for object ) 
ObjBBuffer : DBBufPtr; { blank buffer for object > 
ObjTBuffer : DBBufPtr; { temp buffer for object > 
ObjSize : word; { size of this object } 
HOata : HsgPacketType; { working message > 
LastDisp : pointer; { last displayed object } 

procedure ShowObject; 
{ show current object > 
var 

FData : OBFDataArray; 
FldNun: byte; 

begin 
if CurrClsoObjNum then begin 
if (not SStep) then Exit; 
CurrCls:=ObjNum; 

end; 
if ((not SStep) and (CurrObjoLastDisp) and (not Paused)) 

then Exit; 
RestoreUindow(ObjScreen'); FldNiin:=1; 
while ObjF[FIdNum]'.Page=1 do begin 

DBGetBuffer(FData.ObjBuffer,ObjF[FIcMum]'); 
with ObjFIFldNum]' do 

UriteFast(X,Y,InvC,MakeStr(FData,Len,Oecs,FType)); 
Inc(FldNum); 

end; 
LastD i sp:=CurrObj; 

end; 

procedure PutObjlnBuffer; 
{ put the Current object in the display buffer > 
begin 

if CurrObjonil then Hove(CurrObj*,ObjBuffer*,ObjSize) 
else Hove(ObjBBuffer*,ObjBuffer',ObjSize); 

end; 

procedure ClearCurrObject; 
{ clear data from object > 
var 

FData : OBFDataArray; 
FldNum: byte; 

begin 
FldNum:=1; 
while ObjFCFldHura]*.Page=1 do begin 
if StripLeft(StripRight(ObjF[FldNum]*.Form,' '), 
' ')='BLAMK' then begin 
DBGetBuf fer(FData,ObjBBuffer,ObjF [FlcMum] *); 
DBPutBuffer(FData,ObjBuffer,0bj F[FIdNum]*); 

end; 
Inc(FldNum); 

end; 
end; 
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function DeleteCurrObject:boolean; 
begin 

DeleteCurrObject:=False; 
if CurrObj=nil then Exit; 
TPtr:=CurrObj; 
if FirstObj=TPtr then FirstObj:=FirstObj".Next; 
if LastObj=TPtr then LastObj:=LastObj*.Prev; 
if CurrObj'.Prevonil then CurrObj:=CurrObj".Prev 
else if CurrObj'.Nextonil then CurrObj:=CurrObi".Next 
else CurrObj:=nil; 
if TPtr'.Prevonil then TPtr".Prev*.Next:=TPtr*.Next; 
if TPtr'.Nextonil then TPtr".Next".Prev:=TPtr".Prev; 
Dispose(TPtr); 
PutObjInBuffer; 
DeleteCurrObject:=True; 

end; 

function GetNewObject:boolean; 
{ allocate a new object and add to end of linked list > 
begin 

GetNeuObject:=False; 
if HaxAvail<SizeOf(ObjRec)+HinHein then Exit; 
GetHein(TPtr,SizeOf(ObjRec)); 
TPtr".Prev:=LastObj; 
TPtr'.Hext:=nil; 
if TPtr'.PrevoniI then TPtr .Prev .Next:=TPtr; 
CurrObj:=TPtr; 
LastObj;=TPtr; 
if FirstObj=nil then FirstObj:=TPtr; 
Move(ObjBBuffer',CurrObj*,ObjSize); 
GetNeuObj ect:=T rue; 

end; 

function GetNextObject:boolean; 
{ get the next object > 
begin 

CetNextObject:=False; 
if CurrObj=nil then Exit; 
if CurrObj*.Next=niI then Exit; 
CurrObj:=CurrObj".Next; 
PutObjInBuffer; 
GetNextObj ect:=T rue; 

end; 

function GetPrevObject:boolean; 
{ get the previous object > 
begin 

GetPrevObj ect:=FaIse; 
if CurrObj=nil then Exit; 
if CurrObj".Prev=niI then Exit; 
CurrObj ;=CurrObj *.Prev; 
PutObjInBuffer; 
GetPrevObj ect:=True; 

end; 

procedure GetObject(RType:byte); 
{ enter or update an object > 
var 

FOata : DBFOataArray; 
Fin : boolean; 
FldNum : byte; 
FFld : byte; 
Next : byte; 

begin 
if ((RType=1) and (CurrObj=nil)) then Exit; 
Next:=CR; 
FldNum:=1; 
Fin:=True; 
while ObjFCFldNuml'.Calc do Inc(FldNum); 
FFld:=FldNum; 
ShowMenu(RType+125); 
repeat 

Fin:=False; 
Hove(ObjBuffer*,ObjTBuffer*,ObjSize); 
if RType = 2 then begin 

Hove(ObjBBuffer*,ObjBuffer*,ObjSize); 
if not GetNeuObject then Next:=ESC; 

end; 
FldNum:=FFld; 
ShowObject; 
if NextoESC then repeat 

DBGetBuffer( FOata,ObjBuffer,ObjF[FldNutR] '); 
DBGetField(FData,Next,ObjF [FIdNutiû *,RType, InvC, 

EHPTYSET); 
DBPutBuffer(FData,ObjBuffer,ObjF[FldNunil "); 
DBGetNextFi eld(FldNun,Next,ObjF); 

until Next in [ESC,F5,F6,F10]; 
Fin:=(Next in [ESC,FIG]); 
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case Next of 
ESC: begin { abort > 

Hove(ObjTBuffer*,ObjBuffer*,ObjSize); 
if RType=2 then if DeleteCurrObject then ; 

end; 
F5 ; begin { previous object > 

Hove(Obj Buffer*,CurrObj",Obj Size); 
if not GetPrevObject then ; 

end; 
F6 : begin { next object > 

Hove(Obj Buffer *,CurrObj",0bj Size); 
if RType=1 then if not GetNextObject then ; 

end; 
F10: Move(ObjBuffer*,CurrObj",ObjSize); 

end; 
ShouObject; 

until Fin; 
ShouHenuCCmdLiSt) ; 
if HilightComnandCO) then ; 

end; 

procedure ClearAllObjects; 
C clear data from all objects > 
begin 

TPtr:=FirstObj; 
while TPtronil do begin 

ClearCurrObject; 
TPtr;=TPtr'.Next; 

end; 
end; 

procedure LoadObjects; 
{ load simulation objects from disk } 
var 

TObj : ObjRec; 
ObF : file of ObjRec; 

begin 
C delete current objects from memory } 
while DeleteCurrObject do ; 
{ read objects from disk file if the file exists > 
if not FileExist(08MakeName(SimName,1,0bjNum)) then Exit 
Assign(0bF,DBMakeName(SimName,1,0bjNum)); 
Reset(ObF); 

while (not EOF(ObF)) do begin 
Read(ObF,TObj); 
if not GetNewObject then begin 

Close(ObF); 
HsgCInsufficient memory to load simulation'); 
Halt; 

end; 
HoveCTObj,CurrObj .ObjSize); 

end; 
Close(ObF); 
CurrObj:=F i rstobj; 
PutObjlnBuffer; 
ShouObject; 

end; 

procedure SaveObjects; 
{ save simulation objects to disk > 
var 

ObF : file of ObjRec; 
begin 

{ save objects to disk file > 
TPtr:=Firstobj; 
Assign(0bF,DBHakeName(SiirName,1,0bjNum)); 
Rewrite(ObF); 
while TPtronil do begin 

Write(0bF,TPtr*); 
TPtr:=TPtr".Next; 

end; 
Close(ObF); 

end; 

procedure UpdateClock; 
{ update the simulation object clock > 
begin 

CurrObj".CurrT ime:=KData.Number; 
PutObjlnBuffer; 
ShowObject; 
if CurrObj".CurrTime>CurrObj".MaxTime then 

SendHsg(SIHULATE,CurrObjMnstance.HAILHAN,NINST, 
END_SIHULATION,0.0,PRIORITY); 

end; 
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procedure ReportSïmulation; 
{ print all object detail > 
var 

FOata : DBFDataArray; 
FldNura: byte; 

begin 
CurrObj:=F i rstObj; 
if CurrObj=nil then Exit; 
if not PrinterReady then Exit; 
while CurrObjonil do begin 

PutObjInBuffer; 
FldNum:=1; 
while ObjFIFldNtni]'.Page=1 do begin 

DBGetBuffer(FData,ObjBuffer,ObjF[FldNum]*); 
with ObjFlFldHun]' do 
if not UritePrt(Title+ 
'; •+HakeStr{FData,Len,Decs,FType)+PCRLF+PCRLF) 

then Exit; 
Inc(FldNum); 

end; 
if not UritePrt(PFF) then Exit; 
CurrObj:=CurrObj .Next; 

eml; 
end; 

procedure EntityOeparted; 
{ an entity has left the system > 
begin 

{ set throughput > 
CurrObj *.CurrQty:=CurrObj".CurrOty+1.0; 
{ set rain time in system } 
if ((HData.Number>0.0) and 

((HOata.Number<CurrObj".HinTInSys) or 
(CurrObj*.HinTInSys=0.0))) then 

CurrObj'.MinTInSys:=MData.Number; 
{ set max time in system > 
if MOata.Number>CurrObj*.HaxTInSys then 

CurrObj *.HaxTInSys:=HData.Number; 
{ set avg time in system > 
CurrObj *.AvgTInSys:={(CurrObj'.AvgTInSys* 

(CurrObj*.CurrOty- 1.0)) + 
HData.Nuraber)/CurrObj *.CurrOty; 

PutObjInBuffer; 
ShowObject; 

end; 

procedure S imCIass(HsgPacket:HsgPacketType); 
{ interface to the outside world > 
begin 

HOata:=MsgPacket; 
case HOata.Message of 

CLEAR OBJ 
DELETE OBJ 
ENTER OBJ 
LOAD ÔBJ 
SAVE^OBJ 
SHOW CURR_OBJ 
SHOW"NEXT OBJ 
SHOW~PREV~OBJ 
UPDATE OBJ 
UPDATE~CLOCK 
report'SIH 
ENTITY_OEP 

end; 
end; 

ClearAllObjects; 
if DeleteCurrObject then ShowObject; 
GetObject(2); 
LoadObjects; 
SaveObjects; 
ShowObject; 
if GetNextObject then ShowObject; 
if GetPrevObject then ShowObject; 
GetObject(l); 
UpdateClock; 
ReportSimulation; 
EntityOeparted; 

begin 
0bjSize:=Si2e0f(0bjRec)-8; { subtract 8 for pointers > 
FirstObj:=nil; 
CurrObj:=niI; 
LastObj:=nil; 
LastDisp:=nil; 
ObjectInit(ObjNum,ObjScreen,ObjBuffer,ObjTBuffer, 

ObjBBuffer .ObjF); 
end. 
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unit SOOPSRV; 
{ Service object unit > 

{SI COHPDIRS.PAS> 

interface 

uses SOOPGEN.SOOPGENI; 

procedure SrvClass{HsgPacket:HsgPacketType); 
{ interface to the outside world > 

implementation 

const 
ObjNum = SERVQUE; 

type 
ObjRecPtr = 'ObjRec; 
ObjRec = record { service record > 

Status longint; 
Instance InstType; 
Desc string[251; 
Capacity real; 
SrvStatus StatusType; 
CurrQty real; 
HaxQty real; 
AvgQty real; 
TotalQty real; 
Utilized real; 
HinTBA real; 
HaxTBA real; 
HeanTBA real; 
MinTime real; 
HaxTime real; 
HeanTime real; 
LastArrival real; 
Next.Prev ObjRecPtr; 

end; 
var 

FirstObj,CurrObj,LastObj,TPtr ; ObjRecPtr; 
ObjScreen : WindowPtr; { object screen ) 
ObjF : DBFieldArray; { field defs } 
ObjBuffer.ObjBBuffer.ObjTBuffer : DBBufPtr; { buffers > 
ObjSize : word; { size of this object > 
MData ; HsgPacketType; { working message } 
LastDisp : pointer; { last displayed object > 

procedure ShouObject; 
{ show current object > 
var 

FOata : DBFDataArray; 
FldNura: byte; 

begin 
if CurrClsoObjNun then begin 
if (not SStep) then Exit; 
CurrCls:=ObjNum; 

end; 
if ((not SStep) and (CurrObjoLastDisp) and (not Paused)) 

then Exit; 
RestoreUindow(ObjScreen*); 
FldNun:=1; 
while ObjFCFldNund*.Page=1 do begin 

OBGetBuffer(FOata,ObjBuffer,ObjF[FldNun<] *); 
with ObjF[Fl(Muii]' do 

UriteFast(X,Y,InvC,HakeStr(FData,Len,Oecs,FType)); 
Inc(FldNum); 

end; 
LastDisp:=CurrObj; 

end; 

procedure PutObjInBuffer; ^ 
{ put the Current object in the display buffer } 
begin 

if CurrObjonil then Kove(CurrObj*,ObjBuffer*,ObjSize) 
else Hove(ObjBBuffer*,ObjBuffer",ObjSize); 

end; 

procedure ClearCurrObject; 
{ clear data from object > 
var 

FData : DBFDataArray; 
FldHum: byte; 

begin 
FldNum:=1; 
while ObjF[FldNum]'.Page=1 do begin 
if StripLeft(StripRight(ObjF[FldNum]*.Form,' '), 
' •)="BLANK' then begin 
OBGetBuffer(FOata,ObjBBuffer,ObjF[FldHum]*); 
DBPutBuffer(FData,ObjBuffer,ObjF[FldNum]*); 

end; 
Inc(FldNum); 

end; 
end; 
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function DeleteCurrObject:boolean; 
begin 

DeleteCurrObject:=False; 
if CurrObj=nil then Exit; 
TPtr:=CurrObj; 
if FirstObj=TPtr then FirstObj:=FirstObj".Next; 
if LastObj=TPtr then LastObj:=LastObj".Prev; 
if CurrObj'.Prevonil then CurrObJ:=CurrObj'.Prev 
else if CurrObj*.Next<>nil then CurrObj:=CurrObj".Hext 
else CurrObj:=nil; 
if TPtr".Prev<>nil then TPtr*.Prev".Next:=TPtr".Next; 
if TPtr'.Nextonil then TPtr*.Next*.Prev:=TPtr'.Prev; 
Dispose(TPtr); 
PutObjInBuffer; 
DeleteCurrObject:=T rue; 

end; 

function GetNewObject:boolean; 
{ allocate a new object and add to end of linked list > 
begin 

GetNeuObJect:=False; 
if MaxAvail<SizeOf(ObjRec)+MinMem then Exit; 
CetMem(TPtr,SizeOf(ObjRec)); 
TPtr*.Prev:=LastObj; 
TPtr*.Next:=nil; 
if TPtr'.Prevonil then TPtr".Prev*.Next:=TPtr; 
CurrObj;=TPtr; 
LastObj:=TPtr; 
if FirstObj=nil then FirstObj:=TPtr; 
Hove(ObjBBuffer',CurrObj*,ObjSize); 
GetNewObj ect:=T rue; 

end; 

function GetNextObject:boolean; 
{ get the next object > 
begin 

GetNextObject:=False; 
if CurrObj=nil then Exit; 
if CurrObj*.Next=nil then Exit; 
CurrObj:=CurrObj'.Next; 
PutObjInBuffer; 
GetNextObj ect;=T rue; 

end; 

function GetPrevObject:boolean; 
{ get the previous object > 
begin 

GetPrevObJect:=False; 
if CurrObj=nil then Exit; 
if CurrObj".Prev=niI then Exit; 
CurrObj:=CurrObj".Prev; 
PutObjInBuffer; 
GetPrevObj ect:=T rue; 

end; 

procedure GetObject(RType:byte); 
{ enter or update an object > 
var 

FData : DBFDataArray; 
Fin : boolean; 
FldMutn : byte; 
FFld : byte; 
Next : byte; 

begin 
if ((RType=1) and (CurrObj=nil)) then Exit; 
Next:=CR; 
FldNum:=1; 
Fin:=True; 
while ObjFCFldNutn] *.Calc do Inc(FldNum); 
FFld:=FldNum; 
ShowHenu(RType+125); 
repeat 

Fin:=False; 
MoveCOb jBuf fer',ObjTBuffer",0bj Size); 
if RType = 2 then begin 

Hove(ObjBBuffer',ObJBuffer",ObjSize); 
if not GetNeuObject then Next:=ESC; 

end; 
FldNum:=FFld; 
ShowObject; 
if NextoESC then repeat 

DBGetBufferC FData,ObjBuffer,Obj F[FIdNum]'); 
DBGetField(FData,Next,ObjF[FldNum]*,RType,InvC, 

EHPTYSET); 
DBPutBuffer(FData,ObjBuffer,Obj F[FIdNund '); 
DBGetNext F i eld(FIdNum,Next,0bj F); 

until Next in [ESC,F5,F6,F10]; 
Fin:=(Next in [ESC,F101); 
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case Next of 
ESC: begin { abort > 

HoveCObj TBuffer* ,0bjBuffer *,Obj Size); 
if RType=2 then if DeleteCurrObject then ; 

end; 
F5 ; begin { previous object > 

HoveCObjBuffer',CurrObj .ObjSize); 
if not GetPrevObject then ; 

end; 
F6 : begin { next object > 

HoveCObjBuffer*,CurrObj*,ObjSize); 
if RType=1 then if not GetNextObject then ; 

end; 
F10: Hove(ObjBuffer',CurrObj*,ObjSize); 

end; 
ShowObject; 

until Fin; 
ShowHenuCCmdLiSt); 
if HilightConmandCO) then ; 

end; 

procedure ClearAllObjects; 
{ clear data from all objects ) 
begin 

TPtr:=FirstObj; 
while TPtronil do begin 

ClearCurrObject; 
TPtr;=TPtr*.Next; 

end; 
end; 

procedure LoadObjects; 
{ load simulation objects from disk } 
var 

TObj : ObjRec; 
ObF : file of ObjRec; 

begin 
{ delete current objects from memory } 
while DeleteCurrObject do ; 
( read objects from disk file if the file exists > 
if not FileExist(DBMakeName(SimName,1,0bjNum)) then Exit 
Assign(0bF,DBHakeName(SimName,1,ObjHum)); 
Reset(ObF); 

while (not EOF(ObF)) do begin 
Read(ObF,TObj); 
if not GetNewObject then begin 

Close(ObF); 
HsgCInsufficient memory to load simulation') 
Halt; 

end; 
Hove(TObj,CurrObj*,ObjSize); 

end; 
Close(ObF); 
CurrObj :=F i rstObj; 
PutObjInBuffer; 
ShowObject; 

end; 

procedure SaveObjects; 
{ save simulation objects to disk > 
var 

ObF : file of ObjRec; 
begin 

{ save objects to disk file > 
TPtr:=FirstObj; 
Ass i gn(ObF,OBHakeHameC SinMame,1,0bjNuro) ); 
Rewrite(ObF); 
while TPtronil do begin 

Write{ObF,TPtr*); 
TPtr:=TPtr*.Next; 

end; 
Close(ObF); 

end; 

procedure ReportSimulation; 
{ print all object detail } 
var 

FData : DBFDataArray; 
FldNum: byte; 

begin 
CurrObj:=Fi rstObj; 
if CurrObj=nil then Exit; 
if not PrinterReady then Exit; 
while CurrObjonil do begin 

PutObjInBuffer; 
FldMum:=1; 
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while ObjFIFldNutn] ".Page=1 do begin 
DBGetBuffer(FOata,ObjBuffer,ObjF[FldNifn] *); 
with ObjFCFldNum]* do 
if not UritePrt(Title+ 
': •+HakeStr(FData,Len,Oecs,FType)+PCRLF+PCRLF) 
then Exit; 

Inc(FldNum); 
end; 
if not WritePrt(PFF) then Exit; 
CurrObj:=CurrObj'.Next; 

end; 
end; 

function PointTo(Loc:InstType):ObjRecPtr; 
{ point to the indicated instance } 
var 

TPtr : ObjRecPtr; 
begin 

PointTo:=nil; 
if FirstObj=nil then Exit; 
TPtr:=FirstObj; 
while TPtronil do begin 

if TPtr".Instance=Loc then begin 
PointTo:=TPtr; 
Exit; 

end; 
TPtr;=TPtr*.Next; 

end; 
PointTo:=TPtr; 

end; 

procedure SrvQueComplet ion; 
{ service/queue completion > 
begin 

TPtr:=PointTo(MData.ToInst); 
if TPtr=nil then Exit; 
CurrObj:=TPtr; 
PutObjlnSuffer; 
ShowObject; 
{ message to indicate completion and next route required > 
SendMsg(SERVOUE,TPtr.Instance,ENTITY,MData.Fromlnst, 

ENTITY_SQ_COHP.O.O,SimClock); 
end; 

procedure RequestServiceQueueEntry; 
{ an entity is requesting entry > 
begin 

TPtr:=PointTo{HData.ToInst); 
if TPtr=nil then Exit; 
if TPtr*.CurrQty<TPtr".Capacity then begin 

{ set to busy status } 
TPtr*.SrvStatus:=BUSY; 
TPtr".CurrOty;=TPtr*.CurrQty+1.0; 
TPtr .TotalQty:=TPtr .TotalQty+1.0; 
{ check for max quantity > 
if TPtr*.CurrQty>TPtr'.MaxQty then 

TPtr".HaxQty;=TPtr*.CurrQty; 

{ check for rain interarrivai time > 
if (((SimClock TPtr .LastArrival)>0.0) and 

(((SimClock-TPtr .LastArrival)<TPtr .MinTBA) or 
(TPtr .MinTBA=0.0))) 

then TPtr*,HinTBA:=(SimClock-TPtr".LastArrival); 

( check for max interarrivai time > 
if <SimClock-TPtr".LastArrival)>TPtr*.HaxTBA then 

TPtr".HaxTBA:=(SimClock-TPtr".LastArrival); 

{ set mean time between arrivals > 
TPtr*.HeanTBA:=((TPtr*.MeanTBA*<TPtr".TotalQty-1.0))+ 

(Sim Clock-TPtr*.LastArrival))/TPtr*.TotalQty; 

{ set last arrival time > 
TPtr*.LastArrival:=SimClock; 

{ send message indicating request was granted > 
SendMsg(SERVOUE,TPtr".Instance.ENTITY,MData.Fromlnst, 

REQ_SQ_GRANTEO,0.0,SimClock); 
end 
else begin { send message indicating request denied } 

if MData.Number=0.0 then { no alternate, retry current 
SendMsg(SERVQUE,TPtr".Instance,ENTITY,MData.Fromlnst, 

REQ_SQ_OENIED,0.0,NextCompT ime(TPtr*.Instance)) 
else " C there is an alternate route 

SendHsg(SERVQUE,TPtr".Instance,EHTITY,MData.F rominst, 
REQ_SQ_0ENIED,0.0,SimClock); 

end; 
CurrObj:=TPtr; PutObjInBuffer; ShowObject; 
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procedure EntityLeaveSrvQue; 
{ tell service/queue that entity is leaving > 
begin 

TPtr:=PointTo(HData.ToInst>; 
if TPtr=nil then Exit; 
TPtr".AvgQty:=(((TPtr".TotalQty-1.0)*TPtr".AvgQty)+ 

TPtr".CurrQty)/TPtr*.TotalQty; 
TPtr'.UtiIized;=TPtr".Av9Qty*100.0/TPtr*.Capacity; 
TPtr".CurrQty;=TPtr".CurrQty-1.0; 
if TPtr*.CurrQty<1.0 then TPtr".SrvStatus;=IDLE; 
if ((MData.Number>0.0) and ((MData.Number<TPtr'.MinTime) or 

(TPtr .MinTime=0.0))) then TPtr'.MinTime:=MData.Number; 
if MData.Nimber>TPtr'.MaxTime then 

TPtr".MaxTime:=MData.Number; 
TPtr*.HeanTime:=((TPtr'.HeanTime*TPtr".TotalQty)+ 

MOata.Number)/(TPtr'.TotalQty+1.0); 
CurrObj:=TPtr; PutObjInBuffer; ShowObject; 

end; 

procedure SrvClass(HsgPacket:HsgPacketType); 
{ interface to the outside world > 
begin 

HOata:=HsgPacket; 
case MOata.Message of 

CLEAR OBJ 
DELETË_OBJ 
ENTER_OBJ 
LOAO_OBJ 
SAVE OBJ 
SHOW"CURR OBJ 
SHOWINEXT~OBJ 
SHOW_PREV_OBJ 
UPDATE_OBJ 
REPORT SIM 
REQ_SQ_ENTRY 
SQ COMPLETE 

ClearAllObjects; 
if DeleteCurrObject then ShowObject; 
GetObject(2); 
LoadObjects; 
SaveObjects; 
ShowObject; 
if GetNextObject then ShowObject; 
if GetPrevObject then ShowObject; 
GetObject(l); 
ReportSinulation; 
RequestServiceQueueEntry; 
SrvQueConpletion; 

ENTITY_LEAVE_SO;Ent i tyLeaveSrvQue; 
end; 

end; 

begin 
ObjSize;=SizeOf(ObjRec)-8; { subtract 8 for pointers > 
FirstObj:=nil; CurrObj:=nil; LastObj:=nil; LastDisp:=nil; 
Object Init(ObjHuni,ObjScreen,ObjBuffer,ObjTBuf fer, 

ObjBBuffer.ObjF); 
end. 

unit SOOPHSG; 
{ Message passing unit } 

«1 COMPDIRS.PAS) 

interface 

uses Crt, 
SOOPGEN.SOOPGEHI, 
SOOPSIH, 
SOOPENT, 
SOOPRTE, 
SOOPSRV; 

procedure MessageHandler; 
{ main program message handler > 

implementation 

procedure CheckMessages; 
{ check the message queue for pending messages } 
var 

MOata : MsgPacketType; { avoid pointers to retain data > 
TPtr : MsgPacketPtr; 
Done : boolean; 
MsgNun: byte; 

begin 
Done:=(F i rstMsg=niI); 
while not Done do begin 
if Keypressed then Exit; { allows user to interrupt > 
if ((FirstMsg".Clock>PRIORITY) and (Paused)) then Exit; 
if SStep then begin C display message > 

MsgNum:=Ord(Fi rstMsg".Message); 
WriteMsg(NormC,'Recv: '*ClsNames[FirstMsg'.FromCls]+ 

'+FirstMsg".FromInst+ 
' to '+ClsNames[FirstMsg*.ToClsï+ 
','+FirstMsg*.ToInst+' "'+SoopMsgs[MsgNum]+'" '+ 
HakeStr(FirstHsg*.Nuifcer,0,2,'R»)+','+ 
MakeStr(FirstMsg.Clock,0,2,'R')); 

if CetAKey=ESC then begin 
Paused:=True; 
ShowMenu(l); { show the correct command list > 
if HilightCommand(O) then ; 
Exit; 

end; 
end; 

{ general routines > 
{ simulation object unit > 
{ entity object unit > 
{ routing object unit } 
{ service/queue object unit > 
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if FirstHsg*.Clock>Si(nClock then begin { update clock > 
SinClock:=FirstHsg'.Clock; 
SendHsg(HAlLHAN,NINST.SIMULATE,NINST.UPDATE CLOCK, 

SimClock,PRIORITY); 
end; 
MData:=FirstHsg'; ( get message from message queue } 
TPtr:=FirstHsg; { delete the message & reset pointers > 
F i rstHsg:=F i rstHsg *.Next; 
Dispose(TPtr); 
Dec(HsgCount); 
UriteAt(60,1,CHead+HakeStr(HsgCount.5.0.'W )); 
case MOata.ToCls of { send message to appropriate place } 

MAILMAN : case MData.Message of { message to mailman > 
END_SIHULATION : begin { end simulation > 

Hsg('Simulation completed'); 
Paused:=True; 
ShowHenud); 
if HilightCommand(O) then ; 

end; 
end; 

SIMULATE : SimClass(MOata); 
ENTITY : EntClass(HOata); 
ROUTING : RteClass(HOata}; 
SERVQUE : SrvClass(MOata); 

end; 
Oone;={FirstMsg=nil); 
if not Done then Done:={FirstMsg*.Clock>PRIORITY>; 

end; 
end; 

procedure ShouSitiMame; 
{ show simulation name } 
begin 

Wri teAt(73,1.CHead+SimName); 
end; 

procedure ClearHessages; 
{ clear the message queue } 
var 

TPtr ; MsgPacketPtr; 
begin 

while FirstMsgonil do begin 
TPtr:=FirstHsg; FirstMsg:=FirstMsg".Next; Dispose(TPtr); 

end; 
MsgCount:=0; 

end; 

procedure SimulationClear; 
{ clear the simulation data from all objects > 
begin 

if not 
GetBoolCAre you sure you want to clear the simulation?') 

then Exit; 
ClearHessages; { clear the message queue > 
SimClock:=0.0; { set to a new simulation > 
{ send message to each object class to clear itself > 
for CurrCls:=HaxClasses downto 1 do 

SendMsg(MAILMAN.NINST,CurrCls.NINST.CLEAR Oej.O.O, 
PRIORITY); 

SendH5g(HAILMAN.NINST,CurrCls.NINST,SH0U_CURR OBJ,0.0. 
PRIORITY); 

end; 

procedure SimulationLoad; 
( load a simulation from disk > 
var 
. TName : string[8]; 
begin 

if not GetBoolCOk to replace current simulation?') then 
Exit; 

{ get name of simulation to load > 
TName:=SimName; 
if not 

DBGetPrompted(TName,'Enter Simulation Name to Load: ', 
'A'.20.12.8,0,InvC.'U',FILECHAR) then Exit; 

if StripRight(StripLeft(TName,' '),' ')=" then Exit; 
if not FileExist(DBHakeName(TName,1,1)) then 
if not GetBooU'Simulation '+TName+ 
' not found. Create new simulation?') then Exit; 

{ set current simulation name and display > 
SimName:=TName; ShowSimName; 
ClearHessages; 
SimClock:=D.O; 
Paused:=True; 
ShouHenu(l); { show the correct command list } 
if HilightCommand(O) then ; 
{ send message to each object class to load simulation } 
for CurrCls:=HaxClasses downto 1 do 

SendHsg(MAILMAN.NINST.CurrCls.NINST,LOAD_OaJ,0.0. 
PRIORITY); 

SendMsg(MAILHAN,NINST,CurrCls.NINST.SHOW CURR OBJ.0.0, 
PRIORITY); 

end; 
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procedure SimulationSave; 
{ save a simulation to disk > 
var TName : string[8]; 
begin 

{ ask for filename to save > 
TName:=SimName; 
if not DBGetProcnptedCTName, 

'Enter Simulation Name to Save: ','*',20,12,8,0, 
InvC,'U',FILECHAR) then Exit; 

if StripRight(StripLeft(THame,' '),' ')=" then Exit; 
{ if it exists, ask about replacement > 
if FileExist(DBHakeName(THame,1,1)) then 
if not GetBooU'Simulation '+TMame+ 
• already exists. Ok to replace?') then Exit; 

{ set current simulation name and display } 
SimName:=TName; 
showsimName; 
{ send message to each object class to save itself } 
for CurrCls:=HaxClasses downto 1 do 

SendHsg(HAILHAN,NINST,CurrCls,NINST,SAVE_OBJ,0.0, 
PRIORITY); 

SendHsg(HAILHAN,NINST.CurrCls,NINST.SHOU CURR_OBJ,0.0, 
PRIORITY); 

end; 

procedure SimulationReport; 
{ print simulation reports } 
var CNum : byte; 
begin 

for CNum:=1 to HaxClasses do { tell each class to report } 
SendHsg(HAILHAN,NINST,CNum,NINST,REPORT_SIH,0.0,PRIORITY); 

end; 

procedure SimulationStartStop; 
{ start and stop the simulation } 
begin 

Paused:=(not Paused); { unpause the simulation } 
ShowHenu(l); { show the correct command list ) 
if HilightCommand(O) then ; 
if ((not Paused) and (SimClock=0.0)) then begin 

RandSeed;=1; { set the random number seed ) 
C generate first arrival of all entity types > 
SendHsg(MAILHAN,HINST,ROUTING,NINST,GEN_ARR_TIHE,0.0, 

SimClock); 
end; 

end; 

procedure SimulationOptions; 
{ allow user to change simulation options > 
begin 

VList[0]:='SIHULATIOM OPTIONS'; 
VList[1];='Beeper Toggle'; 
VList[2]:='Single Step Toggle'; 
case GetListV(32,16,2,1) of 

1 : DefBeep := (not OefBeep); 
2 : SStep := (not SStep); 

end; 
end; 

procedure HessageHandler; 
{ main program message handler > 
var 

Ch : byte; { working character variable } 
H : longint; { temporary memory check variable > 

begin 
CurrCls :=1; { initialize currently diplayed class > 
Paused :=True; { current simulation is paused > 
SStep ;=False; { single step is off > 
HsgCount:=0; { message count is zero } 
SimClock:=0.0; { set to a new simulation > 
FirstHsg:=nil; { clear the message queue } oo 
UriteAtd.l ,CHead+ 

'SIMULATION WITH OBJECT-ORIENTED PROGRAMMING 
Msg Count: Sim: '); 

SimName :=' '; C no current simulation > 
ShowMenu(l); { display menu > 
if HilightCommand(O) then ; { hilite command list > 
SendHsg(MAILHAN,NINST,CurrCIS,NINST,SHOW_CURR_OBJ,0.0, 

PRIORITY); { show first class object } 
repeat { go into comnand loop > 
if CurrConinand>0 then begin { user command pending > 

case CurrCommand of 
1 : SimulationClear; { clear data in objects } 
2 : SendHsg(HAILMAN,NINST,CurrCls,HINST, 

DELETEjOBJ,0.0,PRIORITY); { Delete object J 
3 : SendMsg(HAILHAN,NINST,CurrCls,NINST, 

ENTER_OBJ,0.0,PRIORITY); { Enter object > 
4 : SimulationLoad; { Load simulation from disk > 
5 : SimulationOptions; { set simulation options > 
6 : SimulationStartStop;{ Proceed or Pause } 
7 : SimulationReport; { Print simulation reports > 
8 : SimulationSave; { Save simulation to disk } 
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9 : SendHsg(HAILHAN,NINST,CurrCls,NINST, 
UPOATEJOBJ,0.0,PRIORITY); { Update object > 

10: if GetBoolCAre you sure you want to quit?') then 
Halt; { Quit program } 

end; 
CurrCommand:=0; 

end 
else if Keypressed then begin 

Ch;=KeyBoard(AIIChar+[BACK,CR,ESC,LEFT,RIGHT,PGUP,PGDN, 
F5,F6,178],2); 

if Ch=ESC then Ch:=81; 
case Ch of 

178 : begin { show memory > 
H:=MaxAvail; 
Msg('Memory: '+MakeStr(M,0,0,'L')); 

end; 
F5 : SendHsg(HAILHAN,NINST,CurrCls,NINST, 

SHOW_PREV OBJ,0.0,PRIORnY); I show prev > 
F6 : SendHsg(HAILHAN,NINST.CurrCls,NINST, 

SHOU_NEXT_OBJ,0.0,PRIORITY); { show next > 
PGUP : begin { show previous class and object > 

CurrCls:=Succ((CurrCls+MaxClasses-2) mod 
HaxClasses); 

SendHsg(HAILHAN,NINST,CurrCls,NINST, 
SHOW_CURR_OBJ,0.0,PRIORITY); 

end; 
PGDN : begin { show next class and object } 

CurrCls:=Succ(CurrCls mod HaxClasses); 
SendHsg(MAILHAN,NINST,CurrCls,NINST, 

SHOW_CURR_OBJ,0.0,PRIORITY); 
end; 

BACK,LEFT : if HilishtCommand(-l) then; 
SPACE,RIGHT: if HilightConmandd) then; 
13,33..47,58..126: RunCommand(Ch); 

end; { case > 
end 
else CheckMessages; 

until False; { never leave loop! Program quits by HALT ) 
end; 

end. 

« 
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