
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1989

Toward the development and implementation of
object-oriented extensions for discrete-event
simulation in a strongly-typed procedural language
Kurt Hollister Diesch
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Diesch, Kurt Hollister, "Toward the development and implementation of object-oriented extensions for discrete-event simulation in a
strongly-typed procedural language " (1989). Retrospective Theses and Dissertations. 8927.
https://lib.dr.iastate.edu/rtd/8927

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8927&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8927&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8927&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8927&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8927&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8927&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F8927&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/8927?utm_source=lib.dr.iastate.edu%2Frtd%2F8927&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

The most advanced technology has been used to photo
graph and reproduce this manuscript from the microfilm
master. UMI films the text directly from the original or
copy submitted. Thus, some thesis and dissertation copies
are in typewriter face, while others may be from any type
of computer printer.

The quality of this reproduction is dependent upon the
quality of the copy submitted. Broken or indistinct print,
colored or poor quality illustrations and photographs,
print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these
will be noted. Also, if unauthorized copyright material
had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re
produced by sectioning the original, beginning at the
upper left-hand corner and continuing from left to right in
equal sections with small overlaps. Each original is also
photographed in one exposure and is included in reduced
form at the back of the book. These are also available as
one exposure on a standard 35mm slide or as a 17" x 23"
black and white photographic print for an additional
charge.

Photographs included in the original manuscript have
been reproduced xerographically in this copy. Higher
quality 6" x 9" black and white photographic prints are
available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor, tvll 48106-1346 USA
313/761-4700 800/521-0600

www.manaraa.com

www.manaraa.com

Order Number 8920124

Toward the development and implementation of object-oriented
extensions for discrete-event simulation in a strongly-typed
procedural language

Diesch, Kurt Hollister, Ph.D.

Iowa State University, 1989

UM-I
aOON.ZeebRA
Ann Aibor, MI 481Q6

www.manaraa.com

www.manaraa.com

Toward the development and implementation

of object-oriented extensions for discrete-event simulation

in a strongly-typed procedural language

by

Kurt Hollister Diesch

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major: Industrial Engineering

Approved: Members of the Committee:

In Charge of Major Work

For the Major Department

For the Graduate College

Iowa State University
Ames, Iowa

1989

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

ii

TABLE OF CONTENTS

Page

L INTRODUCTION 1

A. Preamble 1

B. Statement of the Problem 1

II. REVIEW OF RELEVANT LITERATURE 4

A. Computer Simulation 4

1. Preliminary concepts 4

2. Types of simulation 5

3. Discrete event simulation 7

4. World views 8

B. Simulation Languages 11

1. Traditional languages 11

2. Improvements in the user interface 15

C. The Object-Oriented Programming Paradigm 20

1. Historical perspectives 20

2. Elements of object-oriented programming 21

3. Advantages of object-oriented programming 25

4. Disadvantages of object-oriented programming 25

D. Object-Oriented Simulation 26

1. Knowledge-based simulation and the DEVS formalism 26

2. Process-oriented simulation 31

3. Implementations of object-oriented simulation 34

4. Future directions in object-oriented simulation 38

5. Summary 40

III. SIMULATION SOFTWARE DESIGN 42

A. Introduction 42

www.manaraa.com

iii

B. Language Selection 42

C. Simulation Program Structure 44

D. Program Primitives 45

1. Keyboard handling 46

2. Screen output 48

3. Printer output 50

4. Error handling 50

E. Class Manipulation 52

1. Class type 53

2. Class creation 54

3. Mapping classes to object types 57

4. Object creation and manipulation 59

F. Object-Oriented Simulation Facilities 67

1. Simulation classes 67

2. Message handling 69

3. Discrete-event simulation messages 74

G. Simulation Message Flow 77

1. Generating arrivals 77

2. Routing entities 79

3. Requesting service or queue entry 81

4. Scheduling completions 84

5. Completing service 86

6. Leaving the system 87

IV. SIMULATION PROGRAM OPERATION 89

A. Introduction 89

B. Starting the Program 89

C. Program Menus 91

www.manaraa.com

iv

D. Object Definition 92

1. Data entry basics 92

2. Simulation class 93

3. Entity class 94

4. Server/queue class 94

5. Routing class 96

E. Loading and Saving the Simulation 97

F. Running the Simulation 98

1. Starting the simulation 98

2. Interrupting the simulation 99

3. Changing the simulation 99

4. Viewing alternate classes and objects 99

5. Restarting the simulation 100

6. Single-step operation 100

7. Printing reports 101

V. DATA COLLECTION AND ANALYSIS 102

A. Introduction 102

B. Simulation Verification 102

1. Single-server model 103

2. Maintenance facility model 105

3. TV inspection and adjustment model 107

4. An advanced simulation model 110

C. Object-oriented Versus Traditional Simulation 115

VI. CONCLUSIONS AND RECOMMENDATIONS 118

VII. BIBLIOGRAPHY 120

VIII. APPENDIX. SIMULATION SOFTWARE SOURCE CODE 129

www.manaraa.com

1

1. INTRODUCTION

A. Preamble

The primary emphasis of this research is computer simulation. Computer

simulations are used to model and analyze systems. To date, computer simulations

have almost exclusively been written in procedural, strongly-typed languages such as

FORTRAN or Pascal.

Recent advancements in simulation research suggest an object-oriented

approach to simulation languages may provide key benefits in computer simulation.

The goal of this research is to combine the advantages of a simulation language

written in a procedural, strongly-typed language with the benefits available through

the object-oriented programming paradigm.

The software developed in this research is capable of simulating systems with

multiple servers and queues. Arrival and service distributions may be selected from

the uniform, exponential, and normal family of distributions. Resource usage is not

supported in the simulation program.

B. Statement of the Problem

Computer simulation can closely represent the real time behavior of systems

while concurrently reducing the costs associated with data collection and study of

real world systems. Simulation languages such as GPSS, SLAM, and many others

have contributed significantly to simulation capabilities.

Most of the currently available simulation languages are based on

strongly-typed traditional programming languages such as FORTRAN. Simulation

models using these standard programming languages are typically constructed in

www.manaraa.com

2

much the same fashion as most computer programs. The user must generate line

after line of complicated computer code. The simulation modeler must generally be

qualified as a simulation expert as well as a computer programmer. Details that can

not be handled by the standard constructs of the language are added as (typically)

FORTRAN inserts to the language.

Many of the manufacturers of simulation languages have recently recognized

that building simulation models using standard programming languages is complex

and results are often difficult to analyze. Few end users choose to invest the time

and money required to generate even the simplest of simulation models. The

complexity of simulation restricts the use of many languages to a minority of highly

trained experts. The first natural extension to the original simulation languages was

to add graphic or menu interfaces to the language in an effort to remove the

programming complexity from model generation.

The results of this effort toward reduced complexity are twofold. While

menus and graphic interfaces have effectively reduced operational complexity of the

programs, versatility has suffered. Some manufacturers of simulation software

choose to exclude all programming from their languages, but can not incorporate all

possible simulation model requirements into their menus or graphic interfaces. The

result is a language that is not capable of adequately modeling complex systems.

Other simulation software manufacturers retain the option of including

external FORTRAN (or other language) inserts into the simulation model, but the

effect is to allow the end user to use the menus or graphic interfaces for the portion

of the modeling task that is already easy. The user must still perform the complex

programming tasks for the difficult portions of the simulation model.

www.manaraa.com

3

Another major problem with the current base of simulation languages is in

the underlying language itself. Computer languages such as FORTRAN, BASIC,

Pascal, C, and others, are all based on a concept known as sequential processing.

Commands contained in the computer code must be processed one by one in a

sequential fashion. Real-world systems, on the other hand, operate in a

multi-process environment, where many activities occur simultaneously. In an effort

to model real-world systems, current simulation languages utilize a built-in clock

that is incremented by the software after all activities scheduled for a particular time

have been completed. Only the increased processing power of computers has

allowed simulation to mimic real-world systems with acceptable speed. The

underlying software, however, still does not operate in a way that truly models

real-world sytem behavior.

Object-oriented programming is a concept developed in the 1970s. With

object-oriented programming, data and the procedures that act on those data are

held together as an "object." The object-oriented approach to programming

provides some unique capabilities that are ideally suited for computer simulation.

Current efforts to use the object-oriented approach to simulation are less than

optimal due to the slow processing speed of available object-oriented languages and

the difficulty of programming in an unfamiliar language.

This research combines the advantages of simulation languages written in

strongly-typed procedural languages with the unique capabilities of object-oriented

programming. A review of relevant literature on simulation, object-oriented

programming, and related topics is presented in Chapter II.

www.manaraa.com

4

II. REVIEW OF RELEVANT LITERATURE

A. Computer Simulation

1. Preliminary concepts

Complex systems are abundant in the world of industry, government, and a

host of other environments. It is often useful to analyze these systems to plan,

optimize, or otherwise modify the operation of the system. To investigate these

systems, historical data related to system behavior could be collected and analyzed.

If past data are not available, collection of current data is an alternative. A greater

problem exists if the system targeted for study is not yet in existence. In the latter

case, a model of the system could be developed. The model could then be used to

represent the real system and the model behavior could be studied to predict the

operation of the real system under a variety of situations. Computer simulation

plays an important role in this modeling of systems.

Taha [75] states that "Computer simulation should be regarded as the next

best thing to observing a real system in operation." The use of a computer

simulation allows system operational data to be collected over a reduced time scale

without the necessary existence of the real system. These data may then be used to

calculate measures of system behavior and performance.

According to Pritsker [58], simulation models can be employed at four levels:

• As explanatory devices to define a system or problem;

• As analysis vehicles to determine critical elements, components, and is
sues;

• As design assessors to synthesize and evaluate proposed solutions;

• As predictors to forecast and aid in planning future developments.

www.manaraa.com

5

Computer simulation models are often built as a mathematical

representation of the system in question. Queueing theory is often the basis used in

the development of the model, but is not sufficient to model the behavior of a

complex system. Queueing theory can be used to study isolated components of a

system, but fails to adequately represent the interactions between the various

elements of the system.

Simulation typically represents the system as a whole. The end result is a

model capable of tracking all the individual processes and activities in the system.

Data are then collected from the simulation model to analyze in appropriate fashion.

The primary benefits of computer simulation may be summarized as follows:

• Computer simulation allows complex systems to be modeled;

• Data may be collected from the simulation for later analysis;

• Time may be scaled to allow simulations of lengthy real-world operation
of a system to be simulated in a relatively short period of computer
simulation time;

• Simulations of nonexistent systems can be performed;

• Alternative operation of real system behavior can be quickly examined.

2. Types of simulation

The primary purpose of a computer simulation is to allow data to be gathered

about the operation of a specific system as a function of time. Computer simulations

are typically categorized into two distinct types:

• Discrete simulation

• Continuous simulation

In a discrete simulation model, data are gathered from the simulation model

at specific points in time, typically when a change occurs in the state of the system.

www.manaraa.com

6

Conversely, continuous simulation requires that data are collected at very small

increments in time during the execution of the simulation.

As an example of the difference between the two types of simulation,

consider two systems. The first system is a ticket sales outlet as illustrated in Figure

2-1. This system is categorized as a single-server queueing system. Customers arrive

in single fashion and wait in line for the clerk. In this model, changes in the state of

the system can only occur when a customer arrives or when the customer completes

service (buys a ticket). When either of these events occur, relative measures of

system performance can be collected. Typical statistics may be the current length of

the queue and the waiting time in the system. At all other times during the

operation of the system, the system statistics remain unchanged, only the simulation

clock (discussed later) will be affected. The system must only be observed at

discrete points in time, thus the name "discrete simulation."

Consider a second system comprised of the heating system for a large

commercial building. The temperature must be adjusted for each area of the

building depending on the current temperature in that area. A measure of the

building system efficiency might be the rate of heat loss. In this case, the

o o o o
ARRIVALS WAITING LINE (QUEUE)

SERVER

DEPARTURES

Figure 2-1. Single-server queueing model

www.manaraa.com

7

temperature in each area must be continuously monitored. This situation would be

ideal for continuous simulation. In computer simulation, it is essentially impossible

to actually monitor a system continuously, so the observation of system dynamics is

performed at small equal intervals of time.

Parameters of the simulation model in question sometimes dictate that both

discrete and continuous modeling concepts must be utilized. The term "combined

simulation" is used to describe simulation models built with both discrete and

continuous simulation features.

The real world is replete with examples where both discrete and continuous

simulation models are appropriate. Most continuous systems can be adequately

modeled through mathematical approaches. This research emphasizes discrete

simulation. The remainder of this discussion will concentrate on the particulars of

discrete event simulation.

3. Discrete event simulation

As described previously, simulation models may be either discrete,

continuous, or a combination of the two, depending on the manner in which change

occurs in the variables of interest in the model. In most simulations, time is the

independent variable. Other variables in the system are functions of time and are

dependent variables. In discrete event simulation, statistics are collected from the

system by monitoring the state of the system over time.

To facilitate the collection of observations, simulations must maintain a

"simulated clock." Because the state of the system can only change when an event

occurs, an accurate picture of the system may be obtained by advancing the

simulated clock from one event time to the next. The use of the simulation clock in

www.manaraa.com

8

this manner is called the "next event approach" and is used in most simulation

languages.

According to Pritsker [58], a discrete event model can be formulated by:

• Defining the changes in state that occur at each event time;

• Describing the activities in which the entities in the system engage;

• Describing the process through which the entities in the system flow.

Three key terms used in the discussion of discrete event simulation may now

be defined with reference to Figure 2-2:

• Event - An occurrence which takes place at a discrete point in time which
marks the beginning or end of an activity.

• Activity - The time passage that occurs between the begin and end events.

• Process - A chronological sequence of events encompassing one or more
activities.

4. World views

Simulation models are often described in terms of their "world view" in

relationship to the concepts of event, activity, and process. In order, the terms used

Process

Activity

—: : • Time
Arrival Start of End of
Event Service Service

Event Event

Figure 2-2. Events, activities, and simulation processes

www.manaraa.com

9

to describe alternative world views are event, activity scanning, and process

orientation.

If the world view is event-oriented, the system is modeled by defining the

changes that occur at event times. The system modeler must define the events that

will change the state of the system and then develop the appropriate simulation logic

to correctly trigger events in a time-ordered fashion and collect the system state

variables at the event times.

To illustrate the event-oriented world view, again refer to Figure 2-1.

Customers arrive and enter the waiting line. When the ticket salesperson is

available, the next waiting customer receives service and then exits the system. The

events in this system are then:

• Arrival of a customer

• Start of service

• End of service

The state of the system remains unchanged except when one of the

aforementioned events occurs. The entire system can be described in terms of these

events. The simulation clock is used to trigger an event. The simulation model logic

is responsible for scheduling the times that future events will occur. This schedule

of events is called the "event calendar." The advantage of the event-orientation is

that the dynamic behavior of the system can be observed by examination of the

system variables only at the event times. Since the number of discrete events is

usually limited in relationship to the total simulation time, the model is generally

simpler to construct.

www.manaraa.com

10

In a simulation system built from the activity scanning orientation, the

activities are described and the conditions which cause these activities to start and

end are defined in the simulation logic. In the activity orientation, the simulation

logic is no longer responsible for scheduling the events on an event calendar.

Instead, as the simulation clock is advanced the pre-defined start and end conditions

for activities in the model are scanned. If the conditions are met, the corresponding

action for the activity is initiated. When the activity scanning orientation is

implemented with a standard procedural language, each activity must be scanned

when the simulation clock is advanced.

Because each activity must be scanned at every clock advance, the activity

orientation becomes inefficient for most simulation modeling problems. However,

some aspects of the activity orientation are useful and are utilized in part by many

simulation languages. In particular, many languages group standard sets of activities

into single statements for inclusion in the simulation model. This approach is the

process-orientation.

Process-oriented simulation languages use standardized statements to track

and model the flow of entities through the system. The control logic associated with

these statements is automatically executed by the simulation language. The

process-oriented simulation languages are relatively simple to utilize. Processes are

usually associated with symbols that describe the simulation language. The modeler

need only create a network of these symbols to develop the model. Process-oriented

simulation languages are ideal candidates for a graphic user interface due to their

symbolic representation. However, because the simulation language is often

restricted to a pre-defined set of symbols, modeling flexibility is usually less than

that of the event orientation.

www.manaraa.com

11

It has been shown that simulation languages can be grouped into categories

based on the types of simulation that they perform and the view that is used in

creation of the simulation model. Many simulation languages have been developed

that fit each of the defined categories. The next section provides a review of some of

these languages, their associated implementations, and the ongoing effort to

enhance the utility of computer simulation tools.

B. Simulation Languages

1. Traditional languages

Arthur, Frendewey, Ghandforoush, and Rees [1] cite the beginning of

computer simulation as the late 1950s. The original computer simulations typically

consisted of FORTRAN programs written for batch operation on mainframe

computers. In a recent study by Pratt [57], over 150 simulation languages were

found available for microcomputers, minicomputers, and mainframe computers.

The first widely used simulation language was GPSS (General Purpose

Simulation System). Developed in the 1960s, GPSS remains one of the more

popular simulation languages available. Schriber [66] writes that "much of the

underlying logic of discrete-event simulation is built into the GPSS simulator.

Unfortunately, this language advantage becomes a disadvantage for the model

builder who does not understand the simulator's internal logic, and yields to the

temptation to use GPSS blindly." The same statement can be applied to most of the

early simulation languages.

Another pioneer in simulation languages was SLAM (Simulation Language

for Alternative Modeling). SLAM, a FORTRAN based simulation language, allows

the modeler to construct simulation models based on the event, activity, or process

www.manaraa.com

12

world views. SLAM contains facilities to support both discrete-event and

continuous simulation constructs. Nearly 1000 installations of SLAM exist in

academic, industrial, and governmental settings. SLAM is available for a wide

variety of computers and operating systems.

The SLAM simulation languate is written in FORTRAN. Many other

simulation languages and dedicated simulation programs have been developed in

FORTRAN because of its widespread use and availability. Another programming

language popular with developers of simulation languages is Pascal. While few

complete simulation languages have been developed in Pascal, much work has been

done in adding discrete-event simulation extensions to Pascal.

Frantz and Trott [24] describe the use of Pascal in the development of the

Dynamic Ground Target Simulator. This system was developed to support the

detailed discrete-event simulation of military activities. Pascal was used as a base

language for the development of an extended language called the Model Definition

Language (MDL). Features added to standard Pascal to support functions necessary

for the simulation application included:

• Event-scheduling

• Message definition and output

• Scenario time

• Direct access files

• Intermodule references

Several features were excluded from the new Pascal implementation to

preserve data protection and abstraction concepts. Other features were added to

improve the readability of the resulting simulation code.

www.manaraa.com

13

Smith and Smith [70] also added extensions to the Pascal language to allow

management and implementation of simulations. Among the new features added to

the standard language were:

• Process handling and synchronization

• List handling

• Distribution functions

• Simulation control

• Histogram functions

Hughes and Gunadi [30] added extensions to ISO standard Pascal through

the development of a preprocessor that generates ISO standard Pascal as output.

The additions to Pascal incorporate a mechanism for quasi-parallel scheduled

processes with multiple instances. The new features of the language are for

purposes of discrete-event simulations.

Barnett [3,4] describes two implementations of MICRO-PASSIM, a

simulation package which provides the source code to Pascal procedures designed to

allow discrete-event and continuous modeling. Among the features for simulation

added to Pascal through MICRO-PASSIM are:

• Real time clock

• Queueing disciplines

• Event sequencing

• Random number generation

• Integration of continuous state variables

Seila [68] presents a similar approach to adding simulation capabilities to

Pascal. SIMTOOLS is a collection of procedures and-functions that allow

www.manaraa.com

14

discrete-event simulation programs to be easily developed in Pascal. The package,

which implements the event world view, has procedures for creating and deleting

entities, managing lists or queues, event scheduling and sequencing, system tracing,

and data collection. SIMTOOLS only provides the core for simulation in Pascal.

The intent is that the user augment the routines for specialized simulation situations.

The following criteria were used during the development of the package:

• Data structures and other declarations should be as simple as possible.

• Procedures and functions should be simple and descriptive and have a
minimum number of parameters, generally no more than three.

• The internal mechanics of list insertion and removal, tracing/debugging
output generation, and other operations should be as transparent as pos
sible to the user, while being accessible.

• Source code should be self-documenting as much as possible.

• Standard Pascal should be used where possible.

A final reference to Pascal simulation environments is given by Thesen [77]

where general information on writing simulations in Pascal is provided. An

emphasis is placed on the development of efficient algorithms and data structures

specific to simulation. Special attention is given to event set management and

algorithms for the generation of random variates from the uniform, exponential,

normal, and gamma distributions.

The previous discussion is not intended to be a complete description of

traditional approaches to simulation. Other languages exist, and differ in many

aspects from those mentioned. Much attention has been focused on the

improvement of the user interface for simulation languages. Research and progress

in the area of user interfaces are discussed in the next section.

www.manaraa.com

IS

2. Improvements in the user interface

Nance [53] indicates that simulation model representation is currently

undergoing a significant transformation. The methods used for the development of

simulation models had remained relatively unchanged for some 20 years. While

revisions, extensions, and other conveniences have been added to the simulation

languages discussed previously, no conceptual advances were obvious.

The increasing demand for simulation software spurred a concentration on

improvements in the way the user interacts with the system. Generally, the

improvement made in simulation software user interfaces can be grouped in four

categories:

• Program generators and development environments

• Graphic input

• Graphic output and animation

• Visual interactive simulation

Kootsey and Holt [40] developed a simple user interface for the development

of continuous simulation models. The user interacts with the program through a

menu and is therefore insulated from the complexities of the underlying simulation

model.

Favreau and Marr [21] describes the EzSIM simulation system which is

designed to aid in the development of continuous simulations. The EzSIM system is

primarily a database management system that contains pre-written sets of simulation

commands used for continuous simulation. The user is interviewed by the system to

determine the necessary components of the simulation. The required code is then

generated and the simulation is performed.

www.manaraa.com

16

Another use of the database approach is offered by Marr [49] through

SIM_BY_INT. The concept of SIM_BY_INT is to interview the simulation modeler

to determine the type of simulation to be performed. SIMJBY_INT would then

develop a database of required information and choose from among several

available simulation languages to select the most appropriate language to use. The

result of this approach is that the user is not required to know how to write the

actual simulation.

The interview technique is again used by Haigh and Bornhorst [27] for the

NCR Corporation. The desire to simulate computer systems at NCR combined with

a goal to reduce the costs of these simulations resulted in the development of several

simulation environments. Each of these simulation systems uses an interactive

interrogation of the user to develop a portion of the code required to eventually

execute a GPSS simulation. Simulation model and report generating facilities have

been developed as simulation aids.

Mathewson [50] reviews the concept of application program generator

software. Application program generators serve to simplify the process of

generating computer code by presenting the user with easily understood prompts

and menus. Based on user responses, the program generator automatically

generates the required computer code to execute the target program. When applied

to simulation, a program generator would generate code to be used by a simulation

package such as GPSS or SLAM. Shanehchi [69] presents the EXPRESS system

which is an application program generator specifically designed for simulation.

EXPRESS generates simulation code for execution by the SEE WHY simulation

language.

www.manaraa.com

17

Cobbin [12] describes SIMPLE_1 which uses the network approach to model

building. The user can create and execute models totally within the SIMPLE l

environment. This ^stem is intended to be a complete simulation environment

which supports the simulation modeling tasks of:

• Data collection

• Data analysis

• Model development

• Compilation and execution of simulations

• Analysis of simulation results

Another integrated simulation environment, TUTSIM, is described by

Meerman [52]. TUTSIM is a simulation tool for the simulation of continuous

dynamic systems. The model input is in dialog form, results are presented

graphically, and calculations can be interrupted at any time.

The GPSS simulation language described earlier has been implemented on

microcomputers. Karian and Dudewicz [36] and Cox and Cox [18] describe

GPSS/PC as an interactive implementation of GPSS which operates on IBM PC

compatible microcomputers. In GPSS/PC, the older multiphasic designs have been

replaced by a single, integrated simulation environment that combines the functions

of editing, compiling, simulating, and debugging.

Karian and Dudewicz [36] also present the PC SIMSCRIPT simulation

system. Through the use of SIMLAB, a specially designed simulation laboratory

environment, the user is able to interact with the simulation language processor. A

prior description of SIMSCRIPT is given by Johnson, Rector, and Mullarney [33].

www.manaraa.com

18

The acceptance of program generators and integrated simulation

environments for simulation languages emphasizes the continuing need for

improved user interfaces. Graphics provide another method of interaction with the

user.

The use of graphic symbols for the design phase of the simulation model is

implemented by Hoover [29] with MICRO-SIM, a network-based simulation system.

Source and sink nodes are placed in the simulation network using graphic

representations on the computer screen. Other types of nodes implemented in the

system are intermediate, probabilistic, shortest queue, sequential attempt, and

rotating discharge nodes.

Wadsworth [82] examines the use of graphics for both input and output in a

simulation environment. MICRO-PASSIM with graphics includes both input and

output graphics. Hollocks [28] further examines the relative benefits of graphics in

simulation. Hollocks states that real representation of the simulation problem is

maintained by the underlying simulation system. The use of graphics can

substantially enhance the interface with the user. With graphics, the user can see the

model and relate to the simulation. The simulation may be better understood if

visualized. Graphics also allows a higher level of user interaction with the

simulation.

Smith and Piatt [71] reinforce the advantages of graphics in simulation,

specifically in the use of animation to display the simulation in progress. Animation

provides better understanding of the simulation for the model builder, the model

user, and to those who wish to examine the results of the simulation.

Barta [5] describes three projects involving animated graphic output of

simulation results. The intent of the projects was to determine future equipment

www.manaraa.com

19

needs related to simulation. Grant and Weiner [26] present a discussion of factors

to consider when selecting simulation systems when animation is desired.

Birtwistle, Wyvill, Levinson, and Neal [9] examined a specialized application

of computer animation in simulation of distributed simulation systems.

Magnenat-Thalmarm and Thalmann [47] also used animation in the development of

a unique computer animation language. Langlois [41] developed another computer

animation language called SIMSEA which can be used to visualize a simulation.

Johnson and Poorte [34] and Magnenat-Thalmann and Thalmann [46]

propose some standards to follow in the development and implementation of

animation in simulation software.

The use of graphics for simulation model input and animated output was first

examined in detail by Hurrion [31]. Hurrion coined the term "Visual Interactive

Simulation (VIS)" to describe the concept of a simulation system that would utilize

graphics for both input and output. Macintosh, Hawkins, and Shepherd [44] further

describe the development of a VIS philosophy at Ford of Europe. Bell and O'Keefe

[6] review the use of VIS in the United Kingdom and North America.

While not called Visual Interactive Simulation systems. The Extended

Simulation System (TESS) and GPSS/PC can be appropriately described as VIS

implementations. Standridge [73] and Cox [17] describe each of these simulation

languages. TESS provides an integrated environment for performing simulation

projects in SLAM and includes the capabilities to graphically build SLAM networks,

enter and manage simulation data, prepare reports and graphs, analyze simulation

results, and animate simulation runs. The latest version of GPSS/PC utilizes

interactive graphics and animation in its simulation environment.

www.manaraa.com

20

Clearly, the user interface component of simulation languages has undergone

a great deal of change since the early simulation languages first became available.

Many other advances in simulation technology have occurred during the same

period that are not as obvious. An important area of current research involves the

development and implementation of object-oriented simulation languages. The

concept of object-oriented programming is discussed in the next section.

C. The Object-Oriented Programming Paradigm

1. Historical perspectives

The simulation languages reviewed previously are built on procedural

languages such as FORTRAN or Pascal. The discussion now turns to a concept

called "object-oriented programming."

According to MacLennan [45], Alan Kay is considered to be the principal

person responsible for the development of an object-oriented programming

language called "Smalltalk." In the late 1960s, Kay realized that advances in

computer design technology would eventually reduce the size and price of

computers to the point that it would be possible for everyone to own a personal

computer of considerable power. However, existing computer languages were

designed for the mainframe computer experts. Kay thought that the absence of an

adequate programming vehicle for these small computers may be an impediment to

the success of personal computers.

Kay investigated simulation and graphics-oriented languages as a new

programming medium. He then proposed the concept of a small computer called

"Dynabook" to Xerox Corporation. In 1971 the Xerox Palo Alto Research Center

began a research project to develop the Dynabook. Smalltalk-72, the language for

www.manaraa.com

21

the Dynabook, was designed and implemented by 1972. The Smalltalk language has

been revised several times and is still undergoing change.

Smalltalk remains as one of the most popular implementations of the

object-oriented programming philosophy. The Smalltalk programming language is

entirely object-oriented. Actor, described by Duff [20], is another example of a

programming language that is exclusively object-oriented. Stein [74] presents the

OPAL object-oriented programming language.

Other languages have been extended to include object-oriented tools.

According to Cornish [14], the C+ + preprocessor, the Flavors system for LISP

machines, and the Conunon LISP Object System are examples of languages that not

only provide standard programming features, but also include object-oriented

programming features. Fountain [56] describes object-oriented extensions that have

been added to the FORTH programming language.

Many implementations of object-oriented programming languages are

available to build object-oriented applications. The next section provides a

discussion of the nature of object-oriented programming. Because the term

"object-oriented programming" was first used to describe the Smalltalk language, the

following discussion will present the concepts of object-oriented programming from

the Smalltalk perspective.

2. Elements of object-oriented programming

Cornish [14] states that object-oriented programming is not another

programming language. It is a set of programming techniques that can be used in

many programming languages. The term "object-oriented programming" has been

incorrectly used to describe many of the graphic user interfaces found in modern

microcomputer applications such as GEM and Microsoft Windows. While it is true

www.manaraa.com

22

that many of the implementations of object-oriented programming are based on a

graphic environment, graphics are not part of the object-oriented philosophy.

Most computer languages operate under the "data-procedure" paradigm.

Procedures (distinct sections of computer code) act on data passed to them.

Procedures must be prepared for every type of task required by the resultant

program. An example would be comparison function, compare(Xl,X2), that takes

two parameters and returns a value indicating whether the first parameter is less

than, equal to, or greater than the second parameter. In a strongly-typed language

such as Pascal, separate compare functions would be prepared for each data type

that requires comparison.

Object-oriented languages employ a data or "object-oriented" approach to

programming. Instead of passing data to procedures, the data (objects) are asked to

perform operations on themselves through the use of "messages." Using the

comparison function example, an object-oriented program statement might appear

as follows:

XI : compare X2.

In this example, the object XI is asked to perform the compare function on

itself. In this case, XI is said to be the "receiver" of the message "compare" and X2 is

supplied as an argument object.

Figure 2-3 illustrates the basic terminology used in object-oriented

programming for the compare function example. XI and X2 are "instances" of a

"class." The class provides all the information necessary to construct and use objects

of a particular kind, its instances. Each instance belongs to one class, but a class may

have multiple instances.

www.manaraa.com

23

X2

CLASS OBJECT

Method 1.... (compare)
Method 2....
Method 3...

Instances of
Class Object

Figure 2-3. Class structure of object-oriented programming

The class also provides storage for "methods." Methods are simply

procedures designed to operate on instances of a class. In the example, compare

would be a class method. Methods are invoked by sending "messages" to an instance

of a class. Each instance of a class has storage allocated to it to maintain its

individual state. The state of an object is referenced by its "instance variables."

Computation in an object-oriented system is achieved by sending a message

to an object which invokes a method in the object's class. In the example, the

message "compare" is sent to the object "XI", which invokes the compare method in

the class object. Typically, a method will send messages to other objects. Each

message-send eventually returns a result to the sender. The state of some of the

objects in a message-send chain may change as a result of the activity. Much of the

message sending that occurs in an object-oriented system is automatic and

transparent to the user.

www.manaraa.com

24

According to Pascoe [55], a programming language must have four elements

to support the object-oriented programming philosophy:

• Information hiding

• Data abstraction

• Dynamic binding

• Inheritance

Tesler [76] describes each of these terms in detail. Information hiding refers

to the breaking up of programs into modules that can be modified independently. In

an object-oriented system, every module is an object, that is, a data structure that

contains the procedures that operate on it. In designing an object-oriented program,

objects are identified which constitute a useful portion of the problem at hand. The

objects contain their own data, and hide that data from other objects.

Data abstraction is the process of hiding data structures within objects. This

practice avoids the strong type-checking requirements of many programming

languages. Data structures may be dynamically modified without requiring changes

to the underlying computer code. Procedures within the object act on the data

independent of the type. These procedures are called "methods" in the

object-oriented programming paradigm. Dynamic binding occurs when the

object-oriented program is executed. Only messages are sent to objects and the data

types and methods are determined by the object. This is known as "polymorphism."

Object-oriented languages share code through "inheritance." A new object

may be created as a variation or exact copy of an existing object. The new object is

called a subclass of the old class, and the old object is a superclass of the new object.

Objects in the subclass inherit all the properties of the superclass, including the

www.manaraa.com

25

implementations of methods. The subclass can define additional methods and

redefine old methods.

3. Advantages of object-oriented programming

Object-oriented programming offers many advantages over procedural

languages. Information hiding and data abstraction increase reliability and help

separate the specification of procedures and data types firom implementation.

Dynamic binding increases the flexibility of the program by permitting the addition

of new classes of objects (data types) without having to modify existing code. The

addition of inheritance to dynamic binding permits code to be reused with minimal

effort. In general, this will reduce the size of the program code and increase

programmer productivity. Object-oriented programs are typically easier to maintain

because of the direct relationship between data and procedures.

Another important advantage of object-oriented languages is the

correspondence between objects in the language and real-world entities. The

programmer may find fewer obstacles in the design phase of a programming project

when the program design closely approximates its real-world counterpart.

4. Disadvantages of object-oriented programming

Object-oriented languages have some characteristics that are considered to

be disadvantages by some. The dynamic binding mechanism of late-binding

object-oriented languages usually requires a high level of computer processor

overhead. A message-send takes more time than a standard function call. The

comparison between message sends and function calls is difficult to measure. While

the message-send is slower, it usually accomplishes more than a function call.

Another disadvantage is that the implementation of the object-oriented

language is often more complex than a comparable procedural language. The

www.manaraa.com

26

programmer must often learn an extensive class library before becoming proficient

in an object-oriented language.

In the final analysis, the choice of programming enviroimients is related to a

multitude of factors, only some of which were considered here. One area that

appears to be well suited for the application of object-oriented languages is

simulation. The use of object-oriented languages in computer simulation is

discussed in the next section.

D. Object-Oriented Simulation

1. Knowledge-based simulation and the DEVS formalism

In recent years an important concept in simulation research known as

"knowledge-based simulation" has been developed and discussed by Zeigler [83,84,

85], Zeigler and Tag Gon [86], Rozenblit and Zeigler [61], Rozenblit, Suleyman, and

Zeigler [62], Ruiz-Mier, Talavage, and Ben-Arieh [63], and Concepcion [13]. These

researchers noted that many concepts related to simulation were also present in the

design and implementation of artificial intelligence ^stems. This similarity

provoked a realization that the two sciences of artificial intelligence and simulation

may someday merge. In preparation for the possible merger, the researchers

decided that the concepts related to both sciences should be studied in an effort to

define a cohesive approach to knowledge-based model preparation and design. In

particular, Zeigler advanced the concept of the Discrete Event Simulation

Specification (DEVS formalism) as a standard approach to knowledge-based

simulation system design and implementation.

Figure 2-4 illustrates the fundamental concepts of modularity and model

bases. Suppose that model A and model B are in the model base. If the models are

www.manaraa.com

27

OLD MODEL

In out In
A

out
* A *

In out In
B

out
* B *

NEW MODEL

In In out In out out In In
A

out In
B

out out
* A * B *

Figure 2-4. Modularity and model bases

in proper modular format, it would be possible to create a new model by specifying

the form of inputs and outputs of A and B that are to be connected to each other and

to external ports, an operation called "coupling." The resulting model, called AB,

would again be in modular form. The coupling process could then continue to build

an unlimited variety of models. The model components would be modular and

hierarchical.

An important benefit of the modular, hierarchical approach is that a model in

the model base can be independently tested by coupling a test module to it. The

result is a reliable and efficient verification of large simulation models.

An important concept in the DEVS formalism is the "coupling specification."

There are three parts in the coupling specification:

www.manaraa.com

28

• External input coupling - describes how the input ports of the composite
model are identified with the input ports of the components.

• External output coupling - tells how the output ports of the composite
model are connected to the output ports of the components.

• Internal coupling - specifies how the components inside the model are in
terconnected.

In general, the coupling relationships of the model components are

illustrated with a composition tree. By following the limbs of a composition tree, a

submodel composition may be obtained. This submodel decomposition supports the

modular, hierarchical concept.

The specification of a modular discrete-event simulation model requires a

different view than that taken by traditional simulation languages. As described

previously, a model must be viewed as possessing input and output ports through

which all interaction with the environment flows. In the case of a discrete-event

model, events determine values present on the input and output ports of the model

components.

A pseudo-code has been developed to assist in the specification of

discrete-event models. This code uses the form "when receive x on input port p,

send y to output port p." This is known as a transition statement and is similar to the

form of predicate logic used in many expert system languages. In addition, the

modular concepts of the DEVS formalism relate closely to the data abstraction and

modularity concepts present in object-oriented languages. Additional control

statements added to the DEVS pseudo-code permit complete specification of the

desired model.

www.manaraa.com

29

Entitles

Model Processor

Atomic model Coupled model Simulator Co-ordlnator

Spec-model Root-co-ordlnator

Broadcast-
model

Digraph
model

Figure 2-5. Class inheritance in DEVS-Scheme

Zeigler [84] describes the implementation of the DEVS formalism for

discrete-event modeling in PC-Scheme, an object-oriented LISP dialect for

microcomputers. In contrast to existing knowledge-based simulation systems,

DEVS-Scheme is based on the DEVS formalism discussed previously.

DEVS-Scheme is a shell that operates in conjunction with PC-Scheme in such a way

that all the underlying object-oriented and LISP features are available to the user.

DEVS-Scheme is primarily coded in SCOOPS, the object-oriented superset

of PC-Scheme. Figure 2-5 illustrates the class inheritance structure of

DEVS-Scheme. The entity object provides all the tools for manipulation of objects.

The model and processor classes provide the basic constructs required for modeling

and simulation.

www.manaraa.com

30

The atomic-model class implements DEVS formalism for discrete-event

models. Spec-model class objects contain the specific entity definitions and port

specifications of the hierarchical model. Coupled-models is the major class which

embodies the composition constructs of the DEVS formalism. Digraph-models and

broadcast models are specializations of the coupled-model class which enable

specification of coupled-models in special ways with linked and finite set

components.

The simulators and co-ordinators are special classes of processors which carry

out the simulation of DEVS models by implementing the abstract simulator

principles developed as part of the theory. Simulators and co-ordinators are

assigned to handle atomic-models and coupled-models in a one-to-one manner,

respectively.

Simulation in a DEVS model proceeds by means of messages passed among

the processors which carry information concerning internal and external events, as

well as data required for synchronization. DEVS-Scheme runs interactively; a

simulation run can be interrupted during the root-coordinator's cycle so that a pause

occurs only at a valid model state. The simulation can be restarted from the resulting

state after desired modifications have been made to the model.

Aside from a minimal standardization of the interfaces, DEVS-Scheme does

not impose any particular choice of typing of the input, state, and output objects.

Because DEVS-Scheme is based on LISP, objects are represented as lists

constmcted and decomposed using cons, car, and cdr functions. For these functions,

there are no types, therefore no type specification is required of DEVS-Scheme.

This facet offers generality, but allows no strong type-checking, which becomes the

responsibility of the programmer. Thus, large memory requirements, the slow

www.manaraa.com

31

execution of languages such as LISP, and the requirement of user-facilitated

type-checking negate many of the benefits of the DEVS-Scheme language for

discrete-event modeling and simulation.

While many researchers approached simulation from the

knowledge-representation viewpoint, others made attempts to advance traditional

views of simulation. A promising area of research related to object-oriented

simulation is the topic of process-oriented simulation discussed in the next section.

2. Process-oriented simulation

An often misused and misunderstood term in computer simulation is

"process-oriented." This term was used previously to define a "world-view" taken by

some simulation languages. While correct, that usage does not represent the

complete definition of process-orientation. A more general description of

process-oriented simulation languages and their implementation is reviewed in this

section.

Golden [25] elaborates the software engineering principles required in a

process-oriented simulation language. Many of the concepts presented are utilized

in the current research involving process-orientation. In a process-oriented

simulation language, modeled systems are viewed as a collection of interacting

processes. Some of the processes are separated into subprocesses to facilitate

simplicity, modularity, and ease of programming. Saydam defines the properties of a

process as:

• It behaves as a separate, independently controlled program.

• It has a well-defined behavior algorithm.

• It is capable of generating objects (entities) and processing them or pass
ing them into other processes.

www.manaraa.com

32

• It can be activated, put on hold, or terminated at desired points in time or
based on certain conditions.

• Once activated, a process repeats its behavior until it is put on hold or ter
minated.

• Many copies (instances) of the same process can be obtained and may be
initiated to work in parallel.

The reader may note that the previous definition of process-orientation does

not directly match that of the process world view defined earlier, but a closer

inspection reveals some similarity. The process world view does indeed represent a

simulation model as a group of activities (processes) and operates on them as a

related group. Traditional simulation languages attempted to implement the

process world view by using activity scanning in an effort to achieve parallelism in

operation of the simulation model.

Original simulation languages as described by Banks and Carson [2] could

not generate new processes and could not, in reality, achieve the parallelism sought

in process-oriented simulation, but the use of high-speed computers could

approximate that behavior. Recent research offers other approaches to

process-oriented simulation, but the underlying concepts remain unaltered. The

primary change of direction has been in the development and extension of different

computer languages to advance the process-oriented approach.

Decker and Maierhofer [19] describe a simulation language called BORIS

which represents an attempt at process-orientation with a strongly-typed procedural

language (Pascal). The building-block approach used in BORIS, along with the

separately compiled modules available in Pascal does provide some of the constructs

of a process-oriented simulation language. However, the approach used with

www.manaraa.com

33

BORIS forces the use of strong types in the definition of objects (processes) and

cannot dynamically create these objects. Parallelism is not achieved in BORIS and

the concept of separate operational modules is not well supported.

Hughes and Gunadi [30] used Pascal as a base language to implement parts

of process-oriented simulation. Extensions were added to standard Pascal for

discrete-event simulation with mechanisms for quasi-parallel execution of scheduled

processes with multiple instances. The major drawback of this implementation is

the strict use of a preprocessor to generate native code for the following compilation

step. The objects and their multiple instances are created at compile time and

cannot be interrupted or modified during the execution of the simulation.

In addition, the programmer must rely on strong types to define the processes

and must generate the appropriate event scheduling code prior to compilation. In

general, the preprocessor, not the resultant simulation program, handles the

process-oriented aspect of the simulation. Malloy and Soffa [48] use Pascal as the

base language for SIMCAL, a merger of Simula and Pascal. SIMCAL uses the

preprocessor approach and does little to add to the flexibility and ease of

programming desired of process-oriented simulation languages.

Another attempt at process-oriented simulation in Pascal is offered by

Vaucher [81] with the PSIM simulation language. Procedures were developed to

facilitate object creation, scheduling, and inieraction. Again however, the

programmer is primarily responsible for the proper creation and scheduling of

processes, the resulting simulation model cannot be altered during execution (after

compilation), and many of the key concepts of a process-oriented language are not

implemented.

www.manaraa.com

34

A similar approach is taken by L'Ecuyer and Giroux [42] using Modula-2, a

language similar to Pascal. The SIMOD language utilizes a structured set of

precompiled modules for scheduling and process interaction. Modula-2

implementation of process-orientation does little to alleviate programmer

involvement in the preparation of a simulation model and only partially supports a

complete set of process-oriented simulation facilities.

The C language has been used by Schwetman [67] to implement a partially

process-oriented simulation package. In addition to supporting process-oriented

simulation, CSIM supports features dealing with modeling system resources,

message passing, data collection, and debugging. Like many previous attempts,

CSIM offers many process-oriented features but requires much of the programmer.

Current research in process-oriented simulation is turning toward symbolic

programming languages as an alternative to traditional languages. Stairmand and

Kreutzer [72] describe the use of LISP to develop a process-oriented simulation

system called POSE. The use of LISP as a base language offers the desired

interactive flexibility and list processing capabilities.

While previous research has included parts of the object-oriented paradigm,

the concentration is now on the full implementation of the object-oriented approach

to simulation as reviewed in the next section.

3. Implementations of object-oriented simulation

The use of the object-oriented paradigm in simulation is documented by

McFall and Klahr [51] in their discussion of Rand Corporation's ROSS language.

ROSS is an object-oriented simulation language used primarily in the area of

military war-game simulation. This language was one of the first to provide

www.manaraa.com

35

inheritance from multiple classes of objects, a feature that is well proven in other

areas of knowledge-based programming.

Smalltalk is an object-oriented programming language based on Simula, an

extension of Algol intended for simulation. Smalltalk objects are well suited to

modeling real-world objects. Specifically, the data values inside an object can

represent the properties and relations in which that object participates, and the

behavior of the Smalltalk object can model the behavior of the real-world object.

Therefore, in Smalltalk, the dominant paradigm of programming is modeling or

simulation. Because of its close relationship with simulation, Smalltalk has been

used in many simulation applications.

Knapp [38,39] describes one of many possible Smalltalk simulation

environments. Everything is Smalltalk is an object which is an instance of a class.

Each class contains class variables, templates for instance variables and the instances

themselves, and methods (procedures) for processing messages sent to objects of

that class. In Smalltalk execution proceeds through objects sending messages to

other objects and waiting until the other objects reply. The application of these

concepts to simulation is apparent.

Users of Smalltalk have extended the original language to provide classes for

discrete-event simulation. The user may utilize these classes directly or extend them

through the subclass mechanism to control the simulation. The simulation classes

include Simulation, SimulationObject, DelayedEvent, WaitingSimulationObject,

Resource, ResourceProvider, and ResourceCoordinator. There are also classes to

provide the necessary probability distributions.

www.manaraa.com

36

Ulgen and Thomasma [78] further describe the Smalltalk simulation

environment and compare simulation in Smalltalk versus traditional languages.

Eight features are compared:

• Modeling orientation

o Input flexibility

• Structural modularity

• Modeling conciseness

• Macro capability and hierarchical modeling

• Standard statistics generation and data analysis

• Animation

• Interactive model debugging

The Smalltalk simulation environment supports an object-oriented approach

where for each object a set of tasks are defined. Objects perform their tasks

independently and pass messages to each other to coordinate their work. This

concept fits the real-world view of systems in which message passing occurs.

Traditional simulation languages generally cannot support this messages passing

capability. The burden of selecting the model orientation is placed on the user.

Input flexibility is provided in Smalltalk simulations through the use of windows and

pop-up screens for data input. Most traditional simulation languages also support

some type of input aids.

Structural modularity refers to the modular organization of the simulation

software. The Smalltalk environment naturally supports modularity while other

simulation languages must be specially structured to support this feature. Concise

simulation models are typically easier to build and debug. Many of the traditional

www.manaraa.com

37

simulation languages, as well as Smalltalk, support conciseness through the use of

block components and simulation network construction.

Traditional simulation languages do not typically support the hierarchical

modeling concepts described previously. The hierarchical nature of object-oriented

languages such as Smalltalk naturally implement the hierarchical approach to

simulation modeling. In addition, macros of system components can easily be

constructed and stored as object in an object-oriented system and are also available

in many traditional languages.

An object-oriented simulation language provides no special advantage in the

generation and analysis of statistics, although the graphics basis of most object

oriented languages such as Smalltalk may provide a richer set of output types.

Animation may also be easier to implement in a language that is already based on

graphics, but animation is readily available in many traditional simulation languages.

Cammarata, Gates, and Rothenberg [10] state that animation may even be more

difficult in an object-oriented language. The interruptible facet of Smalltalk adds

flexibility to model debugging, which is often difficult in traditional simulation

languages.

Concurrency in simulation models can be readily obtained through the use of

an object-oriented paradigm. Bezevin [7] discusses concurrency in Smalltalk. A

simulation platform called SimTalk was built within the Smalltalk environment.

Several aspects of producing simulation software were investigated including

graphical programming, interactive programming, automatic tracing and statistics

gathering mechanisms, and advanced programming techniques useful for simulation.

King and Fisher [37] describe the development of extensions to the Smalltalk

language for use in shop-floor design, simulation, and evaluation.

www.manaraa.com

38

The concept of object-oriented simulation is not restricted to a typical

object-oriented programming language such as Smalltalk. Unger [79] discusses the

use of C, Ada, and Simula for object-oriented simulation with results that tend

toward complexity. Samuels and Spiegel [64] report better success with Ada, but

inspection of the research reveals that the end result does not incorporate many of

the features required of the object-oriented paradigm and is more directed at the

interactive debugging aspect of the simulation.

The research related to object-oriented simulation has primarily focused on

the use of object-oriented languages such as Smalltalk. Other languages such as

Pascal, Ada, and C have also received some attention. A compromise has emerged

between the speed and structure of traditional languages versus the inheritance and

class structure mechanisms of object-oriented languages. Parallel processes and

interactive debugging facilities are desirable components of an object-oriented

simulation system, yet slow execution speed and large memory requirements inhibit

the large-scale use of object-oriented simulation. Clearly, much work is needed in

this area. The next section presents a discussion of the future directions in

object-oriented simulation.

4. Future directions in object-oriented simulation

Birtwistle [8], Jefferson [32], and Vaucher [80] each discuss their views of the

future of simulation software. Rothenberg [60] specifically addresses the need for

further research in object-oriented simulation software regarding modeling power,

control representation, comprehensibility, and reusability of model building.

Current discrete-event simulation systems are limited in the types of

questions they can answer. The simulationist typically specifies the model inputs

and then runs the simulation. This corresponds to a "what if question. Typical users

www.manaraa.com

39

would also like to ask "why," "how," and optimization questions. The limitation of

current simulation languages to answer such questions results primarily from their

underlying representation of knowledge and their lack of inferential capabilities.

One possible approach to add inference capabilities to simulation software is to use

the "inference engine" approach applied to many expert system packages.

The control of the simulation model becomes more important as the power

of the software increases. One of the major shortcomings of most simulation

systems is their inability to represent models with varying degrees of aggregation.

The modeler must predetermine the level of aggregation of the model, and program

the simulation system accordingly. It is currently difficult, if not impossible, to vary

the level of aggregation after the simulation has been started. Dynamic aggregation

would allow a simulation to be run at one aggregate level to a certain point and then

continued at a different aggregate level.

A related limitation is the display of the aggregate levels in usable form.

Many object-oriented systems are graphics-based. Graphics-based systems are

programs that rely on graphic symbols on the computer screen for user interaction.

Smalltalk, Microsoft Windows, and the Apple Macintosh operating system are

examples of graphics-based systems. Graphics-based systems allow greater

flexibility in the presentation of objects to the user and can help the user visualize

the inner workings of a simulation, but with these systems the user cannot control

the level of visual interaction that occurs. The combination of dynamic aggregation

and visual detail changes would be desirable. In such a system, the user could

"zoom" to different detail levels of the simulation with the desired level of detail

always available. In addition, the user should have full control of starting and

www.manaraa.com

40

stopping the model at any point, whether to merely examine the current state of the

system or to change the simulation parameters.

The object-oriented paradigm focuses on the definitions of objects with a

built-in inheritance mechanism in the class and subclass concept. This organization

is limited to the pure hierarchical model relation while real-world models are often

based on many other types of relations. The object-oriented paradigm should be

extended to cover other ̂ es of relations.

Object-oriented simulation systems, as well as the traditional simulation

languages, often must introduce components to the simulation model that are

created for the direct support of the simulation system but do not relate to a

real-world object. It is desirable to reduce the quantity of artificial objects required

in simulation systems in an effort to reduce complexity and distraction.

A further problem in current object-oriented simulation systems involves the

scope of the simulation. Although objects are theoretically intended to encapsulate

data and operations, most current environments make object names, message forms,

and even attribute names globally available. Larger and more complex simulations

will require that strict data hiding and abstraction principles are followed.

A final goal in object-oriented simulation research is to develop a workable

object definition paradigm that would be usable for all types of objects. Such a

representation could be implemented in database form and accessed by the model

builder to create complex models from a standard, albeit large database of objects.

5. Summary

The preceding review of literature represents a diverse array of information

related to simulation. A brief history of computer simulation was presented,

followed by a review of traditional simulation languages and improvements that

www.manaraa.com

41

have been made in the user interfaces of these languages. The concept of

object-oriented programming preceded a discussion of object-oriented simulation

and related topics.

This research furthers the development of the object-oriented paradigm in

simulation. The next chapter presents a detailed discussion of the object-oriented

simulation software developed in this research.

www.manaraa.com

42

m. SIMULATION SOFTWARE DESIGN

A. Introduction

This chapter provides a discussion of the design of the object-oriented

simulation software. As stated previously, the primary goal of this research is to

develop object-oriented extensions for simulation in a strongly-typed procedural

language. There are several distinct goals to be achieved during the course of the

research.

A programming language must be selected to serve as the basis for the

research. Next, the fundamental programming algorithms and procedures must be

developed. Class and instance creation and manipulation must be incorporated into

the software. The object-oriented extensions for simulation must then be added to

the base program. The remainder of this chapter presents a discussion of each of

these major research activities.

B. Language Selection

Many alternative languages are potential candidates fo this research. The

major requirement is that the language used must be a strongly-typed procedural

language. Traditional simulation languages are typically built in FORTRAN, while

modem approaches often utilize languages such as Ada, C, and Pascal.

The use of a strongly-typed language avoids the late binding of data types

inherent in languages without strong typing. Binding is the process of allocating

memory locations for program data. The size and structure of these memory

locations depends on the data types. If the data types are known at compile time,

early binding may be performed, thus reducing the execution time of the program.

www.manaraa.com

43

The use of a procedural language allows increased program modularity which

reduces code maintenance. Modularity also allows greater use of common code

throughout the software. In addition, new operating ^stems are constructed with

procedural languages. If the software created in this research is to eventually be

ported to new operating systems, the use of a procedural language will reduce future

portability problems.

The object-oriented nature of this research indicates that a programming

language that already contains some type of object-oriented extensions would be

useful. Languages such as Objective C or C + + would meet this criterion.

However, in an effort to construct the object-oriented portion of the simulation

language from an unbiased viewpoint, the programming language used should be

one without object-oriented extensions.

Strong type checking exists in many of the modern programming languages

such as C, Pascal, and Ada. The desired procedure orientation is also present in

these languages. The remaining criteria for programming language selection are:

• Fast compilation to minimize program development time.

• Integrated environment to provide ease of use and maximum program
mer productivity.

• Capability to utilize external assembly language subroutines to allow for
the advanced programming requirements necessary in this research.

• Interrupt support to enable the use of multitasking primitives for error
handling.

• Availability on MS-DOS microcomputers to fit the equipment available
for this research.

• Commonly used language to extend the comprehensibility of those who
later examine or extend this research.

• Separate module compilation to allow a unitized approach to the con
struction of the simulation language.

www.manaraa.com

44

After consideration of the listed criteria, Borland International's Turbo

Pascal version 5.0 was selected as the language to use for this research. Turbo Pascal

provides an integrated environment with built-in debugging facilities. Compilation

with Turbo Pascal is fast and the language supports external assembly language

subroutines. Full interrupt support is available and the language operates on

MS-DOS microcomputers. Separate module compilation allows data hiding

necessary with the object-oriented paradigm.

After selection of the programming language, the next step is to develop the

overall structure of the simulation language with respect to the object-oriented

paradigm. The next section provides an overview of the simulation program

structure.

C. Simulation Program Structure

The software created in this research is capable of simulating systems with

multiple servers and queues. Arrival and service time distributions may be selected

from the uniform, exponential, and normal family of distributions. Resource usage

is not supported in the simulation program. Figure 3-1 shows the general structure

of the simulation software developed in this research. As indicated, the program

will consist of three major sections.

Program PrImMlve#

Class Manipulation

ObJect-«rl«nted
Simulation Facilities

Figure 3-1. Simulation program structure

www.manaraa.com

45

Many low-level routines are required in the program that are not directly

related to simulation. These low-level routines are referred to as "program

primitives." The concept of "classes" in object-oriented programming is key to the

proper development of the program. Qass manipulation forms the second major

component of the software. The third major component of the simulation software

developed in this research is devoted to object-oriented simulation facilities which

handle the simulation proper.

Each of the three major components of the software are discussed in detail in

the following sections. The next section reviews the program primitives.

D. Program Primitives

The development of any computer program requires the preparation of many

facilities of a general nature. The program for this research also requires numerous

program primitives for the successful implementation of the complete program. The

program primitives can be placed in several categories which include:

• Keyboard handling

• Screen input/output

• Printer output

• Error handling

• Miscellaneous routines

It has been said that 90% of most computer programs are dedicated to the

handling of input and output. The program for this research also makes extensive

use of input and output through the computer display and the keyboard. In an effort

to achieve maximum program speed and efficiency, routines for input/output

received much attention during program development.

www.manaraa.com

46

function Getakey:byte;
{ get a keystroke from the user }
var

Regs : registers;
be^

repeat { wait for a keystroke }
until KeyPressed;
Regs^Ax:=$0000; { read the keyboard, something has been pressed }
Intr($16,Regs);
if Lo(Regs Ax)=$00 then

Getakey: = 128+Hi(Regs.Ax) { add 128 if special key }
else

Getakey.=Lo(Regs Ax);
end;

function KeyBoard(OkSet:MenuSet; Cursor:byte):byte;
{ gets a valid keystroke and optionally runs pop-ups }
var

Ch: byte;
OldCursor: byte;
Regs: registers;

be^
OldCursor:=CurrentCursor;
SetCursor(Cursor);
repeat

Ch: = Getakey;
if not (Ch in OkSet) then Beep; { beep if invalid }

until (Ch in OkSet);
KeyBoard:=Ch; { valid key was selected - return keystroke }
SetCursor(OldCursor);

end;

Figure 3-2. Keyboard handling routines

1. Keyboard handling

The user of the program will be required to enter data from the keyboard.

Routines to handle keyboard input are an essential part of the program. The Pascal

language provides basic keyboard input through the READ function. The READ

function does not allow input of function keys and does not allow for strict error

checking and confinement of user input to a restricted set of allowable characters.

The GETAKEY and KEYBOARD functions shown in Figure 3-2 replace the

www.manaraa.com

47

FWAttr EQU BYTE PTR [BP+6]
FWCol EQU WORD PTR [BP+8]
FWRow EQU WORD PTR BP+10]
FWSt EQU DWORD ETO [BP+12]

FastWrite PROC FAR

PUSH BP
MOV BP,SP
PUSH DS
MOV AX,FWRow
MOV DI,FWCol
CALL CalcOffset
MOV CL,RetraceMode
LDS SI,FWSt
CLD
XOR AX^AX
LODSB
XCHG AX,CX
JCXZ FWExit
MOV AH,FWAttr
RCR AL,1
JNC FWMono
MOV DX,03DAh

FWGetNext:
LODSB
MOV BX,AX
CLI

FWWaitNoH:
IN AL,DX
TEST AL,8
JNZ FWStore

FWWaitH:

FWStore:

RCR
JC

IN
RCR
JNC

AL,1
FWWaitNoH

AL,DX
AL,1
FWWaitH

FWMono:

FWExit:

MOV AX,BX
STOSW
STI
LOOP FWGetNext
JMP FWExit

LODSB
STOSW
LOOP FWMono

POP DS
MOV SP,BP
POP BP
RET 10

;Save BP
;Set up stack frame
;Save DS
;AX = Row
;DI = Colunm
;Call routine to calculate offset
;Grab this before changing DS
;DS:SI points to St[0]
;Set direction to forward
;AX = 0
;AX = Length(St); DS:SI - St[l]
;CX = Length; AL = Wait
;If string empty, exit
;AH = Attribute
;If RetraceMode is False...
; use "FWMono" routine
;Point DX to CGA status port

;Load next character into AL
;Store video word in BX
;No interrupts now

;Get status
;VerticaI retrace in progress?
;Ifso,go
;Else, wait for end of
; horizontal retrace

;Get 6845 status again
;Wait for horizontal
; retrace

;Move word back to AX...
; and then to screen
;Allow interrupts!
;Get next character
;Done

;Load next character into AL
;Move video word into place
;Get next character

;Restore DS
;Restore SP
;Restore BP
;Remove parameters and return

FastWrite ENDP

Figure 3-3. Assembly language routine for screen output

www.manaraa.com

48

procedure WriteFast(X, Y,SC:b^e; Srstring);
{ use fastest possible write routine to write a string at X,Y in SC color }
be^

FastWrite(S,Y,X,SC);
end;

procedure WriteAt(X,Y:byte; Szstring);
{ write a string at X,Y with specified imbedded colors (default is norm) }
var

Attrs: array [0..6] of byte Absolute BackC;
CAttr: byte; current attribute }
Ps: byte; current position}
Len: byte; length or string}

be^
if Pos(#255,S)=0 then begin

FastWnte(S,Y,X,NormC);
Exit;

end;
CAttr:=NormC; { default to normal text}
Ps:=0;
Len: = 0rd(s[01);
while Ps>0 do begin

Inc(Ps);
if S[Psj = #255 then begin { special color attribute }

CAttr:=Attrs[Ord(S[Succ(Ps)])];
Inc(Ps,2);

end;
FastWrite(S[Ps],Y,X,CAttr);
Inc(X);

end;
end;

Figure 3-4. Pascal interfaces to screen routine

READ function by reading keyboard input directly from the host machine's

low-level keyboard buffer to provide the desired functionality,

2. Screen output

A large amount of information is manipulated during a simulation program.

One of the major thrusts of this research is to develop software that is highly visual

in an effort to demonstrate the object-oriented functions of the program. Pascal

provides screen output with the WRITE procedure but this facility is inefficient and

too slow for this research. The routines shown in Figure 3-3 and Figure 3-4 were

www.manaraa.com

49

function WritePrt(S:string):boolean;
{ print and check tor errors or user abort}
const

PWait = 20000; { 20 second wmt for timeout}
var

if Length(S)=0 then begin
WritePrt:=True;
Exit;

end;
PAbort:=ErrorCheck(False);
while ((Length(S)O) and (not PAbort)) do be^n

if Keypressed then begin
Regsj^x:=$0000; { read the keyboard }
Intr($16,Regs);
if Lo(Regs^)=$00 then Chk: = 128+Hi(Regs_Ax)
else Chk:=Lo(Regsj\x);
if Chk=ESC then PAbort:=GetBool('Print cancel requested, Ok to stop?');

end;
if not PAbort then begin

Regs Dx:=$0000; f select printer 1}
Regsj^x = Ord(S[l]); { output 1 character }
Intr($17,Regs);
Timeout:=0;
wWle ((fHi(Regs.Ax) and 128)=0) and (TimeOutWait)) do begin

Inc(Timeout);
Delay(l);
Regs.Dx: = $0000; { select printer 1}
Regs^Ax: = $0200; { request printer status }
Intr($17,Regs);

if Timeout=PWait then PAbort: = (not PrinterReady);
if not PAbort then Delete(S,l,l);

end;
end;
while Keypressed do begin

Regs j\x: = $0000; { clear the keyboard, just in case }
Intr($16,Regs);

end;
WritePrt: = (not PAbort);

end;

Figure 3-5. Printer output function

renters;
irt: boolean;

Chk: byte;
TimeOut: word;

begïn

end;

www.manaraa.com

50

developed to bypass the host computer's input/output system and write screen

output directly to video memory. Screen output handled in this way results in the

optimum display speed necessary for this research.

3. Printer output

Certain operations of the program require printed reports to collect and

analyze simulation information. The standard Pascal language provides access to a

printer with the WRITELN procedure. WRITELN presents a problem if error

conditions occur during printer output. If, for example, the printer runs out of paper

while printing, the error message returned by the printer will cause the display to

scroll. No direct recovery of the correct screen display would be possible. It is also

desirable to allow the user to interrupt printing at any time. The function shown in

Figure 3-5 provides a solution to the problems stated above.

4. Error handling

Any computer program should adequately protect the user and the data from

errors that may occur, either through system malfunction or incorrect entry of data.

The software developed in this research addresses both types of errors.

frocedure Int240n;
enable new Int24 error handler }

begin
GetIntVec($24,01dInt24); save old Int24 vector }
SetIntVec(S24,@Int24); install new critical error handler }
CritError:=0; and set global errors to zero }
PasError:=0;
AMSTError:=0;

end;

procedure Int240ff;
{ restore original Int24 error handler }
begin

SetIntVec($24,01dInt24); { restore old Int24 vector }
end;

Figure 3-6. Routines to enable and disable error handler

www.manaraa.com

SI

procedure Int24(Flaçs,es,IP,AX,BX,CX,DX,SI,DI,DS,ES,BP:word);interrupt;
{ general purpose critical error handler }
type

ScrPtr = ^ScrBuf;
ScrBuf = array [1.320] of byte;

var
Di^lay, OldLine: ScrPtr;
AH,AL,OIdAttr: byte;
Row,Col: integer;
Action: char;
ErrMsg: string;
ErrCode: word;
Ch: shortint;
DevAttr: '^word;
DevName: '^char;

begin
ErrCode:=lOResultPrim; { call lOResuIt before to clear }
if IsMono then Display: = ptr($BCKX),Pred(MSGLINE) * 160) { save screen }
else Display:=ptr($B800,Pred(MSGLINE)^160);
New(OldLine); OldLine ̂ : = Display ̂ ;
AH:=Hi(AX); AL: = Lo(AX);
Col:=Where a; Row: = Where Y ;
OldAttr: = TextAttr; ErrMsg: = ";
if (AH and $80) = 0 then begin

ErrCode: = Lo(DI); ErrMsg: = 'DOS Critical Error';
end
else begin

DevAttr: = Ptr(BP, SI+4); { point to device attribute word }
if (DevAttr and fôOOO) 0 then begin {if bit 15 is on }

Ch:=0;
repeat

DevName: = Ptr(BP,SI+$0A+Ch); ErrMsg:=ErrMsg+DevName ;
Inc(Ch);

until (DevName ̂ = Chr(O)) or (Ch7);
ErrMsg: = ErrMsg + ' not responding; ErrCode: = $02;

end
else begn

ErrMsg:='Bad File Allocation Table*; ErrCode:=$0D;
end;

end;
GotoXY (1,MSGLINE); T extAttr:=ErrorC;
ChEol; WriteC ',ErrMsg,' ~ A)bort or R)etry?'); Beep;
repeat Action:=Upcase(Readkey); until Action in [#27,'A','R'];
Display ̂ :=OldLine ̂ ; Dispose(OldLine);
GotoXY(Col,Row); TextAttr: = OldAttr;
case Action of

#27,'A': be^ CritError:=ErrCode; AX:=0; end;
R': begn CritError: = 0; AX: = 1; end;

end;
ErrCode:=lOResultPrim; { call lOResult after to clear }

end;

Figure 3-7. Replacement interrupt 24 handler

www.manaraa.com

52

MS-DOS computers automatically generate a class of errors called "critical

errors" when certain error conditions are present. Under normal program

operation, critical errors display an "Abort, Retry, Ignore" message on the screen

and cause the screen to scroll. Critical errors are generated through the internal

software interrupt number 24 hex. To prevent the screen scrolling, the software

must replace the default interrupt 24 handler. Fi^re 3-6 shows the routines used to

enable and disable the new interrupt 24 critical error handler. Figure 3-7 shows the

replacement interrupt 24 handler used in this research.

The foundation for the simulation software developed in this research has

been presented. The next section presents a discussion of the methods used to

manipulate the classes in the simulation program.

E. Class Manipulation

The previous section presented the basic building blocks of the software

created in this research. This section presents a discussion of the concept of classes

as used in the context of object-oriented programming.

Classes allow implementation of the basic principles of object-oriented

programming:

• Information hiding

• Data abstraction

• Dynamic binding

• Inheritance

Information hiding is implemented in the software by placing the

declarations for variables inside Pascal units for each class. Each class is only aware

www.manaraa.com

53

of its own format. The objects within a class unit cannot be directly accessed by

objects of another class.

Data abstraction is implemented by creating generic class types in the Pascal

language. These class types are generalized templates that contain sufficient

information for self-definition. The class types are known globally only as

place-holders in memory. All support routines in the program are written to

manipulate these generic class types.

Dynamic binding is achieved by avoiding direct manipulation of fields within

objects whenever possible. The message handling ̂ stem described later performs

the manipulation of the actual data within objects of a class. Messages may change

during operation of the program and are not reliant on the compilation of the

program source code.

Inheritance is a direct result of the combination of class types and Pascal

units. When objects of a particular class are created, they automatically assume the

structure of the parent class. Procedures that act on that class type are also

automatically inherited. This research only allows single-level inheritance

mechanisms. The following sections provide additional details of the structure of

classes in this research and the methods used for class manipulation.

1. Class type

The data abstraction principle of object-oriented programming dictates that

classes of objects should be defined in such a manner that the class knows of its own

structure but all classes share the same basic construction. In a strongly-typed

procedural language such as Pascal, this abstraction of classes is accomplished

through the use of a global class type definition. In this research, the class type is

constructed on a field by field basis with the record defininition shown in Figure 3-8.

www.manaraa.com

54

DBFieldPtr = DBField;

DBField = record {input
Title
FType
Len
Decs
X
Y
Page
ALen
AOfs
CCase
Mand
Calc
KType
OkSet
Form
WTitle

end;

screen field definition record
DBTitleStr;
char;
byte;
byte;
byte;
byte;
byte;
byte;
mteger;
char;
boolean;
boolean;
char;
MenuSet;
DBFormStr;
boolean;

field title ^
field type
field length }
decimal precision }
X position on screen i
Y position on screen }
field page on screen }
byte length of field }
onset into record }
up/low conversion type }
mandatoiy entry? }
calculated field }
key: N)o D)ups U)nique }
allowable entry chars }
formula for this field }
on screen w/title? }

Figure 3-8. Class field definition record type

The DBField record type described in Figure 3-8 is key to the

object-oriented nature of this research. The information used in this record type is

used to construct all classes. Note that sufficient information is available for display

and modification of objects created with this record structure. The fields within the

DBField record closely parallel typical definitions for object classes under the

object-oriented paradigm. A combination of DBField records can be used to define

a class. After a class is defined, generic class manipulation methods can be used on

the class without knowing the exact structure of the class.

2. Class creation

A programmer using the methods developed in this research can quickly

create new class types by using the DBField record type to define the individual

fields in a class. The simulation program developed for this research used a separate

program to define the classes. The separate program allowed for on-screen editing

www.manaraa.com

55

procedure DBPutFieldDef(var DFT:DBReld; Title:DBTitleStr;
FTypexhar; Len,Decs,X,Y,Page^Len:byte;
AOts:mteger CCasexhar;
Mand,Calc:booIean;
KeyT^xhar; OkSet:MenuSet;
Fonn:DBFormStr; WTitleiboolean);

{ put a definition into a DBField }
begin

DFT.Title:=Title; DFT.FType:=FType; DFT.Len;=Len;
DFT.Decs:=Decs; DFT.X:=X; DFT.Y:=Y;
DFTfage:=Page; DFTj\Len;=ALen; DFTAOfs:=AOfs;
DFT.CCase: = CCase; DFT.Mand:=Mand; DFT.Calc: = Calc;
DFT.KType:=KeyTyp; DFT.OkSet:=OkSet; DFT.Form:=Form;
DFT.Witle:=Witle;

Figure 3-9. Procedure to place class definition into memory

function DBLoadDef(FName:string; ObiBuffer,ObjTBuffer,ObjBBuffer:DBBufPtr;
ObjFiDBReldArray; ObjScreen:WindowPtr):boolean;

{ load database definition }
var

I,NFlds:byte; DBNrinteger; SStr:string[DBMaxFIdLen];
DDFR:DBFiIeRec; DDFV:file of DBFileRec;

bedn
DBLoadDef:=False; NFlds: =0; FillChar(SStr,Succ(DBMaxFldLen),#32);
ObiScreen ̂ .ULX: = 1; ObiScreen .ULY:=Pred(DBMINY);
ObjScreen ̂ .LRX:=80; ObjScreen ̂ .LRY:=Succ(DBMAXY);
Assign(DDFV,FName); Reset(DDFV);
FillChar(ObjBuffer ,Succ(DBMAXRECLEN),0);
FdlChar(ObjTBuffer ,Succ(DBMAXRECLEN),0);
while not EOF(DDFV) do begn

Read(DDFV,DDFR); case DDFRRType of
0: be^ { field deGnition }

Inc(NFlds); Move(DDFR.FieldDef.Title,ObjFfNFlds] ,SizeOf(DBField));
ObjFfNFlds] .Tide:=PadRight(ObjF(NHds] ̂ .Title,' '.DBTITLELEN);
case ObjFfNFlds] .FType of

W: begin SStr[0]:=Chr(ObiF[NFldsl .Len);
DBPutBuffer(SStr,ObjBuffer,ObjF(NFlds] ̂);end;

'E': DBPutBuffer(DBBENTRY,ObjBuffer,ObjF[NFlds] ^);end;
end;

1: begin { screen line }
for I:=0 to 79 do case Hi(DDFR.ScrLine.Cont[I]) of

DDFR.ScrLine.Cont
DDFR.ScrLine.Cont
DDFR.ScrLine.Cont

:=Lo(DDFR.ScrLine.Cont
:=Lof DDFR.ScrLine.Cont
:=Lo(DDFR.ScrLine.Cont

+ (LowC shl 8);
+ (NormC shl 8);
+ (InvC shl 8); 3

end;
Move(DDFR.ScrLine.Cont,ObjScreen >Add[DDFR.ScrLine.Line],160);

end; end;
end;
Close(DDFV);
for I:=Succ(NFlds) to DBMAXFIELDS do ObjF(I] ̂ : = ObjF[0] ̂ ;
Move(ObjBuffer .ObjBBuffer ,Succ(DBMAXRECLEN)); DBLoadDef:=TRUE;

end;

Figure 3-10. Procedure to load class definitions

www.manaraa.com

56

procedure ObjectImt(ObjNum:byte;
var ObjScreen:WindowPtr;
var ObjBufFer,ObiTBuffer,ObjBBuffer:DBBufPtr;
var ObjFiDBMeldArray);

{ initialize memory for use by an object class defimtion }
var

I: integer;
NFlds: byte;
MemOk: boolean;

be^
MemOk:=True;
I:=0;
if MaxAvaiISizeOf(WindowArray) +MinMem then

GetMem(ObjScreen,SizeOf(windowArray))
else

MemOk:=False;
if MemOk then

MemOk:=DBGetWorkingBuffers(ObjBuffer,ObjTBuffer,ObjBBuffer);
if MemOk then begin

I:=0;
while ((lAXFIELDS) and (MemOk)) do begin

if MaxAvaiISizeOf(DBHeld)+MinMem then
GetMem(ObjF[I],SizeOf(DBField))

else MemOk: = False;
Inc(I);

end;
end;
if not MemOk then begin

Msg('InsufGcient memory to run program');
Halt;

end;
with ObjF[0] ̂ do begin

Title
FType
Len
Decs
X
Y
Page
ALen
AOfs
CCase
Mand
Calc
KType
OkSet
Form

end;
if not

= CharStrC ',10);
DBBCHAR;
DBBBYTE;
DBBBYTE;
DBBBYTE;
DBBBYTE;
DBBBYTE;
DBBBYTE;
DBBINT;
DBUPLOW;
DBNMAND;
DBNCALC;
DBNKEY;
n;
DBBFORM;

DBLoadDef(

end;
then Halt;

DBMakeName(CLSNAMES[ObjNum],0,0),
ObiBuffer,
ObjTBuffer,
ObiBBuffer,
ObjFjObjScreen)

Figure 3-11. Procedure to intialize classes

www.manaraa.com

57

of the DBField parameters and then saved the DBField records in a disk file.

Separate editing of the DBField parameters allows for data abstraction in

object-oriented programming.

The simulation program must only load the DBField records from a disk file

for each class when the program is started. The procedure shown in Figure 3-9 is

used to place the DBField records into memory where they can later be used by the

classes as described later.

A disk file exists for each class in the simulation program. The procedure

shown in Figure 3-10 is called once for each class in the program to load the

definition into memory. The procedure shown in Figure 3-11 is used to initialize the

class for use in the simulation prograriL After the class definitions have been placed

in memory, the simulation program has sufficient information for class manipulation

in a generic fashion.

3. Mapping classes to object types

The class initialization routines shown in Figure 3-11 create a space in

memory for a class definition. This memory space is treated in a generic fashion by

the simulation program. The object-oriented paradigm mandates that the individual

objects within a class must be aware of their own structure and data contents. This

awareness is accomplished by mapping the generic class definition to a specific

Pascal record type within each class unit. By restricting the specific record definition

of a class to the unit that contains the class methods, information hiding is

maintained.

Mapping of class definitions to objects is achieved through the use of pointers

in Pascal. A pointer is a memory address. The simulation program must only be

aware of the address of the current working object. Each class unit contains a

www.manaraa.com

58

memory buffer used to hold the current working object. This memory buffer is

maintained in a fixed and known location. A Pascal record type may then be defined

within each class unit. The working object is then transferred to the fixed-location

buffer whenever the object must be manipulated. The procedures shown in Figure

3-12 are used to move the current object in a class to the working buffer. The

procedures and functions described in the next section may then be used to

manipulate the objects within a class.

Within each class unit, several pointers are maintained to assist in locating a

specific object when manipulation of the object is required. All objects of a

particular class are collected in a linked list. The common factors within object

definition records are pointers to the next and previous instances of an object.

Pointers to the first, last, and current working object are also maintained within each

class. Initially, the first, last, and current object pointers are set to the nil memory

address which points to nothing and indicates an empty list.

Note how the procedures shown in Figure 3-12 use the information contained

in the generic class definitions to determine the size and location of fields within an

object. These procedures allow a field within an object to be directly accessed and

modified. The actual layout of the data fields in an object are only known within a

rocedure DBGetBuffer(var FData; OWBuffer:DBBufPtr; DFT:DBFie!d);
get contents of buffer at defined field}

begin
Move(ObjBuffer ̂ [DFTAOfs],FData,DFT.ALen);

end;

procedure DBPutBuffer(var FData; ObjBufferiDBBufPtr; DFTiDBField);
{ put contents into buffer }
begin

Move(FData,ObjBuffer [DFT AOfs],DFr.ALen);
end;

Figure 3-12. Procedures to load and save object buffers

www.manaraa.com

59

class unit and cannot be externally modified, thus maintaining the information

hiding principle of the object-orient programming paradigm.

The most similar action in SLAM to create a new class would be the creation

of a new type of network node. To create a new network node, a programmer would

have to write the supporting code for the new node. Next, the programmer would

have to modify other code segments in SLAM that would potentially reference the

new network node. All data interdependences at the source code level must be

examined and possibly modified. The entire process could potentially take a great

deal of time and resources. The comparative complexity of new class creation in the

software created for this research is minor because data interdependences between

classes do not exist in keeping with the object-oriented programming paradigm.

4. Object creation and manipulation

Many methods are common between classes. Methods are required to create

and manipulate specific instances of an object. Given the basic building blocks for

class definition and access described previously, new instances of an object can be

created and existing instances of an object can be accessed and manipulated.

The procedures shown in Figure 3-13 and Figure 3-14 demonstrate object

creation and deletion. Note that knowledge of the internal structure of a class is not

required for these operations. This intentional ignorance provides a high level of

modularity to the program. Qass methods remain relatively simple and portable

between class units.

Note the use of the PutObjInBuffer method shown in Figure 3-15 when

deleting an object through the DeleteCurrObject method. The PutObjInBuffer

method places an object into the class working buffer discussed previously. After an

object has been placed in the working buffer, it can be accessed and manipulated

www.manaraa.com

60

function GetNewObject:boolean;
{ allocate a new object instance and add to end of linked list}
begin

GetNewObject:=False;
if MaxAvail < SizeOf(ObjRec)+MinMem then

Exit;
GetMem(TPtr,SizeOf(ObjRec));
TPtr ̂ Jrev:=LastObj;
TPtr^.Next:=nil;
if TPtr ̂ .Prev <> nil then

TPtr ̂ .Prev ̂ .Next:=TPtr;
CurrObJ:=TPtr;
LastObj:=TPtr;
if I%stObj=nU then

FirstObj:=TPtr;
Move(ObjBBuffer ̂ .CurrObj ̂ .ObjSize);
GetNewObject:=True;

end;

Figure 3-13. Method for object instance creation

function DeleteCurrObject:boolean;
be^

DeleteCurrObject: = False;
if CurrObj=nil then Exit;
TPtr:=CurrObj;
if FirstObj = TPtr then

FirstObj:=FirstObj ̂ .Next;
if LastObj=TPtr then

LastObj:=LastObj ̂ .Prev;
if CurrObj .Prev <> nil then

CurrObj: = CurrObj ̂ .Prev
else if CurrObj ̂ .Next <> nil then

CurrObj:=CurrObj ̂ .Next
else

CurrObj:=nil;
if TPtr.Prev < > nil then

TPtr .Prev ̂ .Next:=TPtr .Next;
if TPtr Next < > nil then

TPtr ̂ .Next ̂ .Prev:=TPtr .Prev;
Dispose(TPtr);
PutObjInBuffer;
DeleteCurrObject:=True;

Figure 3-14. Method for object deletion

www.manaraa.com

61

with the methods shown in Figures 3-16 through 3-23. Note throughout these

methods that specific data fields within the class definitions are never referenced.

Figure 3-16 presents the method used to display the current object on the computer

screen.

Figure 3-17 shows the method used to clear data from the current object. A

key value of "BLANK" is placed in the formula field of a class definition if the field is

to be cleared when this method is invoked. The method shown in Figure 3-18 is

frocedure PutObjInBuffer;
put the Current object in the display buffer }

be^
if CurrObj < > nil then Move(CurrObj .ObjBuffer .ObjSize)
else Move(ObjBBuffer ,ObjBuffer .ObjSize);

end;

Figure 3-15. Method to place object in working buffer

frocedure ShowObject;
show current object}

var
FData: DBFDataArray,
FldNum: byte;

begin
if CurrCIsOWNum then begin

if (not SStep) then Exit;
CurrCls:=ObjNum;

end;
if ((not SStep) and (CurrObjLastDisp) and (not Paused)) then Exit;
RestoreWindow(ObjScreen);
FldNum: = 1;
while ObjF[FldNum] ̂ .Page = 1 do begin

DBGetBuffer(FI)ata,ObjBuffer,ObjF[FldNum] ̂);
with ObjF(FldNum] do

WriteFast(X,Y,InvC,MakeStr(FData,Len,Decs,FType));
Inc(FldNum);

end;
LastDisp:=CurrObj;

Figure 3-16. Method to display an object

www.manaraa.com

62

invoked if all objects of a class are to be cleared. This method traverses the linked

list of objects and calls the method to clear a single object.

The methods shown in Figure 3-19 demonstrate how the linked list of objects

is traversed to select either the previous instance or the next instance of a particular

object. These methods are used by higher level routines discussed later.

Many of the instances of an object created during the execution of the

program require the user to enter data in the data fields. The object-oriented

paradigm suggests that access to the data fields of an object should be accomplished

without direct knowledge of the format of that data. The software created in this

research performs this data entry task in much the same fashion as the object

Ï
rocedure ClearCurrObiect;
clear data from object}

var
FData: DBFDataArray;
FldNum: byte;

begin
FldNum: = 1;
while ObjFTFldNum] ̂ .Page=1 do begin

if StnpLeft(StripRight(ObjF[FldNum] ̂ .Form,' ')='BLANK' then begin
DBGetBuffer(FData,ObjBBuffer,ObjF[FldNuml);
DBFutBuffer(FData,ObjBuffer,ObjI^FidNum]);

end;
Inc(FldNum);

end;
end;

Figure 3-17. Method to clear an object

procedure ClearAllObjects;
{ clear data from all objects }
begin

TPtr:=FirstObj;
while TPtr < > nil do begin

ClearCurrObject;
TPtr:=TPtr ̂ .Next;

end;
end;

Figure 3-18. Method to clear all instances of an object

www.manaraa.com

63

function GetNextObject:boolean;
{ get the next object}
begin

GetNextObject:=False;
if CurrObj=nil then Exit;
if CurrObj J*îext=nil then Exit;
CurrObj:=CurrObj ̂ .Next;
PutObjInBuffer;
GetNextObject:=True;

end;

function GetPrevObject:boolean;
{ get the previous object}
begin

GetPrevObject:=False;
if CurrObj=nil then Ent;
if CurrObj ̂ .Prev=nil then Exit;
CurrObj:=CurrObj ̂ .Prev;
PutObjInBuffer;
GetPrevObject:=True;

end;

Figure 3-19. Methods to get the next or previous object

creation. The program knows the layout of the objects internally to the class units,

but access to the specific fields is accomplished in a generic way through the class

definitions described previously.

The method shown in Figure 3-20 demonstrates user data entry that

conforms to the object-oriented paradigm. Note how methods defined previously

are used to access individual data fields within the object. As each field is accessed,

the data corresponding to that field is moved to a temporary buffer, manipulated

according to the class definition, then moved back to the object.

The methods shown in Figures 3-21,3-22, and 3-23 are used to print the

contents of all current instances of an object, load all instances of an object from a

disk file, and save all instances of an object to a disk file.

www.manaraa.com

64

Î
rocedure GetObject(RType:byte);
enter or update data in an object instance }

var
FData: DBFDataArray;
Fin: boolean;
FldNum: byte;
FFld: byte;
Next: byte;

begin
if ((RT^e = 1) and (CurrObj=nil)) then Eat;
Next: = CR;
HdNum: = 1;
Hn;=True;
while ObjFlFldNum] ̂ .Calc do Inc(FldNum);
FFld:=HdNum;
ShowMenu(RType +125);
repeat

Fin:=False;
Move(ObjBuffer .ObiTBuffer ̂ .ObjSize); { save current object }
ifRTj^ = 2 then begin

MovefObiBBuffer ̂ ,ObjBuffer ̂ ,ObjSize); { new blank record }
if not GetNewObject then Next:=ESC; { allocate new object }

end;
FldNum:=FFld;
ShowObject;
if Next < > ESC then repeat

DBGetBuffer(RData,ObjBuffer,ObjF[FldNum] ̂);
DBGetField(FData,Next,ObjFlFldNum] ,RType,InvC,EMPTYSET);
DBPutBuffer(FData,ObjBuffer,ObiHFldNum] ̂);
DBGetNextField(FldNum,Next,ObjF);

until Next in [ESC,F5,F6,F10];
Hn: = (Next in [ESC,F10]);
case Next of

ESC: begin {abort}
Move(ObjTBuffer ̂ ,ObjBuffer .ObjSize);
if RTy^e=2 then if DeleteCurrObject then ;{ delete object }

end;
F5: begm { prewous object}

Move(ObjBuffer ,CurrObj .ObjSize);
if not GetPrevObject then ;

end;
F6: begin { next object }

Move(ObjBuffer .CurrObj ̂ ,ObjSize);
if RTj^e = 1 then if not GetNextObject then ;

end;
FIO: Move(ObjBuffer ̂ ,CurrObj ,ObjSize);

end;
ShowObject;

until Fin;
ShowMenu(CmdList);
if HilightCommand(0) then ;

end;

Figure 3-20. Method to allow user entry of data in an object

www.manaraa.com

65

frocedure ReportSimuIation;
print all object detail}

var
FData: DBFDataArray, FldNum: byte;

begin
CurrObj:=RrstObj; if CurrObj=nil then Exit;
if not PrinterReady then Exit;
while CurrObj <> nil do be^

PutObjlnBuffer; FldNum: = 1;
while ObjFfHdNum] ̂ Jage=1 do be^

DBGetËufrer(FData,ObjBufirer,ObjF[FldNum] ̂);
with ObjF[FldNumj ̂ do

if not WritePrt(Title+*: ' +
MakeStr(Ftoata,Len,Decs,FType)+PCRLF+PCRLF) then Exit;

Inc(FldNum);
end;
if not WritePrt(PFF) then Exit;
CurrObj: = CurrObj .Next;

end;
end;

Figure 3-21. Method to print contents of objects

frocedure LoadOMects;
load simulation objects from disk }

var
TObj: ObjRec; ObF: file of ObjRec;

begin
while DeleteCurrObject do ; { delete current objects from memory }
if not FileExist(DBMakeName(SimName,l,ObjNum)) then Exit;
Assign(ObF,DBMakeName(SimName,l,ObjNum)); Reset(ObF);
while (not EOF(ObF)) do begin

Read(ObF,TObi);
if not GetNewObject then begin

Close(ObF);
MsgCInsufHcient memory to load simulation, program halted'); Halt;

end;
Move(TObj,CurrObj ̂ .ObjSize);

end;
Close(ObF); CurrObj:=FirstObj;
PutObjlnBuffer; ShowObject;

end;

Figure 3-22. Method to load objects from a disk file

www.manaraa.com

66

rocedure SaveObjects;
save simulation objects to disk }

var
ObF: file of ObjRec;

begn
{ save objects to disk file }
TPtr:=FirstObj;
Assign(ObF,DBMakeName(SimNaine,l,ObjNum));
Rewrite(ObF);
while TPtr <> nil do begin

Wnte(ObF,TPtr^);
TPtr:=TPtr.Next;

end;
Close(ObF);

Figure 3-23. Method to save objects to a disk file

The methods described in this section are all used in a generic way to manipulate

classes and objects. It is important to recognize that these routines do not rely on

any particular format of the classes. These routines strictly follow the

object-oriented philosophy as discussed previously. Generic treatment of classes

and objects allows methods to be created that will correctly function regardless of

the structure of the target class. Code portability and programmer efficiency is

enhanced and chances of programmer error are reduced.

The software created in this research now has general object-oriented

capabilities. The primaiy goal of this research is to develop object-oriented

simulation capabilities in a strongly-typed procedural language. The general

routines described thus far are used as building blocks for the next phase of the

software development. The next section provides a description of the

object-oriented simulation capabilities created in this research.

www.manaraa.com

67

F. Object-Oriented Simulation Facilities

The methods discussed in the previous section treat classes and objects in a

generic way. The primary goal of this research is to integrate object-oriented

simulation capabilities into a strongly-typed procedural language. This section

describes the object-oriented facilities developed in direct support of discrete-event

simulation.

The first step toward object-oriented simulation is to define the classes

necessary for discrete-event simulation. Next, the basis for message handling is

presented. The current and future events calendar responsible for control of the

simulation is then described followed by an overview of the simulation clock.

Finally, the messages used in discrete-event simulation are presented.

1. Simulation classes

There are four primary classes that must be incorporated into the simulation

program to support the desired simulation environment. They are the "Simulation"

class, the "Entity" class, the "Routing" class, and the "Server/Queue" class.

In keeping with the object-oriented paradigm, the data that are relevant to

each of these classes are maintained within the associated instance variables. It is

important to note that the use of classes as a generic representation of simulation

objects allows the generation of multiple instances of an object. A complex

simulation model can then be built by using instances of an object without regard to

the interaction between these objects which is automatic.

Figures 3-24 through 3-27 show the internal structure of each of the

simulation classes. Note that these record structures are only known within the class

and therefore follow the information hiding construct of object-oriented

programming.

www.manaraa.com

68

ObjRec = record { simulation object record }

end;

Status:
Instance:
Desc:
MaxTime:
CurrTime:
CurrQty:
MinTInSys:
MaxTInSys:
Av^nS^:
Next:
Prev:

longint;
Instiype;
strin^25];
real;
real;
real;
real;
real;
real;
ObiRecPtr;
ObjRecPtr;

Figure 3-24. Simulation class definition

ObjRec = record { entity object record }
Status:
Instance:
TypeCode:
CurrLoc:
CreateTime:
StartTime:
TimelnSys:
WUlFail:
Next:
Prev:

end;

longint;
InstType;
real;
InstType;
real;
real;
real:
boolean;
ObiRecPtr;
ObjRecPtr;

Figure 3-25. Entity class definition

ObjRec = record { routing object record }
Status: longint;
Instance: InstType;
Desc: string[25];
EntType: real;
CurrLoc: InstType;
Dist: InstType;
Mean: real;
Std: real;
FailPerc: real;
FailTo: InstType;
NextLoc: Instl^»;
BalkLoc: InstTj^;
Next: ObjRecPtr;
Prev: ObjRecPtr;

end;

Figure 3-26. Routing class definition

www.manaraa.com

69

ObJRec = record { server/queue object record } ObJRec
Status: longint;
Instance: InstType;
Desc: string[25];
Capacity: real;
SrvStatus: StatusType;
CurrQty: real;
MaxQt^ real;
AvgQty real;
TotalQty: real;
UtUized: real;
MinTBA: real;
MaxTBA: real;
MeanTBA: real;
MinTime: real;
Ma/Time: real;
MeanTime: real;
LastArrival: real;
Next: ObjRecPtr;

ObjRecPtr; Prev:
ObjRecPtr;
ObjRecPtr;

end;

Figure 3-27. Server/queue class definition

The data contained within each object is used to track key simulation

parameters during the execution of the simulation program. Object data are

constantly presented to the user during program execution. Some of the data are

initially entered by the user of the program while other data are maintained by the

program. In all cases, no object can directly access data in another object. All

interaction between objects is performed through messages passed between objects.

2. Message handling

The foundation of the object-oriented simulation program created in this

research is the message handling system Messages are the only form of

communication between objects. Figure 3-28 shows the format of messages in the

simulation program. Every message in the program follows the standard message

format, although some of the fields in the message packet may not be used.

www.manaraa.com

70

MsgPacketType = record
FromCk: byte;
Fromlnst: InstType;
ToCls: byte;
Tolnst: InstType;
Message: Msdl%pe;

sal;

end;

Number: rea
Clock: real;
Next: Ms^acketPtr;

from which class }
from which instance }
to which class }
to which instance }
the actual message }
a number to pass in message }
time to execute message (-1.0 = immediate) }
pointer to next message }

"igure 3-28. Message packet format

The globally accessible procedure shown in Figure 3-29 is used to place

messages on the message queue. Messages are placed in the message queue

according to the time entered in the clock field of the message. The messages are

automatically stored in time sorted order. Messages are then taken one at a time

from the head of the message queue.

The use of an ordered list for the message queue directly corresponds to the

events calendars found in discrete-event simulation. Strict adherence to the

time-ordered structure of the message queue ensures that messages in the

simulation system will follow the time-ordering necessary for simulation

synchronization. The use of object-oriented message passing effectively removes the

necessity for the traditional current and future events calendars.

Figure 3-30 shows the main routine used to control the simulation program.

The main program commands are implemented in this routine. The main loop of

this routine checks for user input and acts on that input if found. If no user input is

pending, control is passed to the message checking routine shown in Figure 3-31.

This routine is aware of the different classes and uses the message packet

parameters to determine where the message should be sent. Note that this routine

does not require knowledge regarding the internal structure of the classes.

www.manaraa.com

71

procedure SendMsg(FromCls:byte;FromInst:InstType; ToCk:byte; ToInst:InstType;
MessagetMsgfType; Number,Clock:real);

{ send a Message to/from the indicated Class, Instance, optionally with Number }
var

MsgPacket: MsgPacketPtr;
TPtr,Lptr: MsgPacketPtr;
Done: boolean;
MsgNum: byte;

begin
if MaxAvail < = SizeOf(MsgPacketType)+MinMem then begin

MsgCInsufficient memory for message queue, program aborted'); Halt;
end;
GetMem(MsgPacket,SizeOf(MsgPacketType)); { allocate message memory }
MsgPacket ̂ .FromCls:=FromCls; assign from class }
VrenPanlrf»*- FrnmTnct» — PrnmTnc»- assign from InStanCC }

assign to class }
assign to instance }
assign message }
assign number }
assim clock time }
display message }

MsgPacket ̂ .Fromlnst:=Fromlnst;
MsgPacket ̂ .ToCls:=ToCls;
MsgPacket .Tolnst:=Tolnst;
MsgPacket ̂ .Message; = Message;
MsgPacket ̂ .Number:=Number;
MsgPacket ̂ .Clock:=Clock;
if SStep then be^

MsgNum:=Ord(MsgPacket ̂ .Menage);
WnteMsg(NormC,'Send: ' + ClsNames[MsgPacket .FromCls] +

+MsgPacket ̂ .Fromlnst+
' to '+ClsNames[MsgPacket .ToCls]++MsgPacket .Tolnst +
' +SoopMsgs[Ms^um]+"" +
MakeStr(Mstfacket ̂ .Nimiber,0,2,'R') +

+MakeStr^sgPacket .Clock,0,2,'R'));
if GetAKeyO then ;

end;
Inc(MsgCount);
WriteAt(60,l,CHead+MakeStr(MsgCount,5,0,'W));
MsgPacket .Next: = HrstMsg; f start as new first message }
if MrstMsg=nil then be™ {this is the only message }

FirstMsg:=MsgPacket; Exit;
end;
if MsgPacket .Clock < FirstMsg .Clock then begin { belongs first}

MsgPacket ̂ .Next:=HrstMsg;
HrstMsg:=MsgPacket;
Exit;

end;
Done:=False;
TPtr:=FirstMsg; { point to first message }
LPtr:=TPtr;
while (not Done) do begin { find appropriate position }

MsgPacket ̂ Next:=TPtr ^ .Next;
TPtr .Next:=MsgPacket;
if TPtrHrstMsg then LPtr .Next: =TPtr;
Done: = (MsgPacket ̂ .Next=nil);
if not Done then begin

LPtr: = TPtr;
TPtr:=MsgPacket ̂ .Next;
Done: = (Ms^acket .Clock > TPtr ̂ .Clock);

end;
end;

end;

Figure 3-29. Message sending procedure

www.manaraa.com

72

frocedure MessageHandler;
main program message handler }

var
Ch: byte j f working character variable }
M: longmt; { temporary memory check variable }

be^
imtialize currently diplayed class }
current simulation is paused }
single step is off }
message count is zero }
set to a new simulation }
clear the message queue }

CurrCls: = l;
Paused:=True;
SStep:=False;
MsgCount:=0;
SimClock:=0.0;
FirstMsg:=nil;
WriteAt(l,l ,CHead +

'SIMULATION WITH OBJECT-ORIENTED PROGRAMMING ' +
+'Msg Count :Sim:');

SimName: =' '; I no current simulation }
ShowMenu(l); { display menu }
if HilightCommand(O) then ; { hilite command list }
SendMsg(MAILMAN,NINST,CurrCls,NINST,SHOW_CURR_OBJ,0.0,PRIORITY);
repeat { now go into command loop }

if CurrCommand < > 0 then begin { if user command is pending, act on it }
case CurrCommand of
SimulationCIear; { clear the data in the simulation objects }
SendMsg(MAILMAN,NINST,CurrCls,NINSTJDELETE_OBJ,0.0,PRIORITY);
SendMsg(MAILMAN,NINST,CurrCls,NINST,ENTER_OBJ,0.0,PRIORITY);
SimulationLoad;
SimulationOptions;
simulations tartStop;
SimulationReport;
SimulationSave;

Load simulation from disk }
set simulation options }
Proceed with or Pause current simulation }
Report (print) simulation reports }
Save simulation to disk }

SendMsg(MAlLMAN,NINST,CurrCls,NINST,UPDATE_OBJ,0.0,PRIORITY);
10: if GetBool('Are you sure you want to quit?') then Halt; { Quit program }

end;
CurrCommand:=0;

end else if Keypressed then begin
Ch:=KeyBoard(AllChar+
[BACK,CR,ESC,LEFT,RIGHT,PGUP,PGDN,F5,F6,178],2);

if Ch=ESC then Ch:=81;
case Ch of

F5:SendMsg(MAILMAN,NINST,CurrCls,NINST,SHOW PREV OBJ,0.0,PRIORITY);
F6:SendMsg(MAILMAN,NINST,CurrCls,NINST,SHOWi;NEXT~OBJ,0.0,PRIORITY);
PGUP:begin { show previous class and its current object instance }

CurrCls:=Succ((CurrCls + MaxClasses-2) mod MaxClasses);
SendMsg(MAILMAN,NINST,CurrCls,NINST,SHOW_CURR_OBJ,0.0,PRIORITY);
end;

PGDN:begin { show next class and and its current object instance }
CurrCls:=Succ(CurrCls mod MaxClasses);
SendMsg(MAILMAN,NINST,CurrCls,NINST,SHOW_CURR_OBJ,0.0,PRIORITY);
end;

BACKjLEFT: if HilightCommand(-l) then;
SPACE,RIGHT: if HilightCommand(l) then;
1333..47,58..126: RunCommand(Ch);

end; { case }
end else CheckMessages; { check the message queue }
until False; { never leave this loop! (program quits from HALT) }

end;

Figure 3-30. Main program loop

www.manaraa.com

73

Procedure CheckMessages;
check the message queue for pending messages }

var
MData: MsgPacketType; { avoid pointer type to retain data }
TPtr: Ms^acketPtr;
Done: boolean;
MsgNum; byte;

begin
Done: = (HrstMsg=nil);
while not Done do be^

if Keypressed then Exit; { allows user to interrupt}
" '"i then Exit; {simulation paused }

MsgNu
WnteMsg(NormC,'Recv:"' +

ClsNames[KrstMsg ̂ .FromCls]+V+HrstMsg ̂ .Fromlnst +
' to '+ClsNames[FirstMsg .ToCls]++FirstMsg ̂ Tolnst +
' +SoopMsgs[MsgNumf + ' +
MakeStr(FirstMsg^ .Number,0,2,'R') + +
MakeStr(HrstMsg ̂ .Clock,0,2,'R'));

if GetAKey=ESC then be^
Paused: =True;
ShowMenu(l); { show the correct command list }
if HilightConunand(0) then ;
Exit;

end;
end;
if FirstMsg ̂ .ClockSimClock then be^ { update the simulation clock }

SimClock:=FirstMsg ̂ .Clock;
SendMsg(MAILMi^,NINST,SIMULATE,NINST,

UPDATE_CLOCK,SimClock,PRIORITY);
end;
MData:=FirstMsg I get message from front of message queue }
TPtr:=FirstMsg; { delete the message & reset pointers }
FirstMsg:=RrstMsg ̂ .Next;
Dispose(TPtr);
Dec(MsgCount);
WriteAt(60,l,CHead+MakeStr(MsgCount,5,0,'W));
case MData.ToCls of { send message to appropriate place }

MAILMAN: case MData.Message of (message to mailman, handle it here }
END SIMULATION : begin { ena current simulation }

^7sg('Simulation completed');
Paused:=True;
ShowMenu(l);
if HilightCommand(O) then ;

end;
end;
SIMULATE: SimClass(MData);
ENTITY: EntClassfMData);
ROUTING: RteClass(MData);
SERVQUE: SrvClass(MData);

end;
Done: = (RrstMsg=nil);
if not Done then Done: = (FirstMsg .Clock > PRIORITY); { no priority messages }

end;
end;

Figure 3-31. Message handler (MAILMAN)

www.manaraa.com

74

MsgType = (
NMSG,
CLEAR OBJ,
DELETE OBJ,
ENTER OBJ,
LOAD ÔBJ,
SAVET)BJ,
SHOW" CURR OBJ,
SHOW~NEXT~OBJ,
SHOWIPREVOBJ,
UPDATE OBJ,
UPDATELCLOCK,
GEN ARR_TIME,
GEN"ARRIVAL,
GET>IEXT_RTE,
GET ALT RTE,
GET~FAIC RTE,
GET"FAILIRTRY,
REQ~SQ ENTRY,
REQ~SQ~GRANTED,
REQ'SQ DENIED,
REQ'SQICOMP,
SCH3O_COMP,
SQ_COMPLETE,
ENTITY SO COMP,
ENTITYILEAVE_SQ,
ENTITY SET FAIL,
ENTITY~NO_FAIL,
ENTITY~DEP,
LEAVE3YS,
REPORT_SIM,
END SIMULATION

);

nil message }
clear data fields in objects of a class }
delete an instance of an object j-
enter (user) new data for an object}
load simulation objects from disk }
save simulation objects to disk }
show current instance of an object}
show next instance of an object}
show previous instance of an object}
update (user) the data for an object}
update the simulation clock }
determine which arrival to generate & when }
general next arrival of an entity }
get next routing for an object |
request for service/queue demed, get alternate route }
request for service/queue after failure }
request for service/queue denied after failure, retry }
entity request for entry to service or queue }
request for service/queue granted }
request for service/queue denied }
request completion of service time)
schedule the completion of service }
a service has been completed}
tell entity is has completed a service/queue }
tell service/queue that entity has left}
set an entity to fail service ^
set an entity not to fail service }
entity has departed system }
tell entity to leave system }
report on the simulation }
end the current simulation }

Figure 3-32. Messages used in discrete-event simulation

3. Discrete-event simulation messages

The procedures shown previously demonstrate the interaction of the

messages in the object-oriented simulation software with the objects. This section

provides details of the specific messages used for discrete-event simulation. Figure

3-32 lists all the messages used in the simulation software.

The procedures shown in Figures 3-33 through 3-36 show the specific

messages for each class. Note how the messages are transformed into specific

www.manaraa.com

75

frocedure SimClass(MsgPacket:Ms^acketType);
interface to the outside world }

begin
MData:=MsgPacket;
case MData.Message of

ClearAllObjects;
if DeleteCurrObject then ShowObject; { delete omect instance }
GetObject(2);
LoadObjects;
SaveObjects;

ShowObject;

clear all data from objects } CLEAR OBJ;
DELETE OBJ:
ENTER OBJ:
LOAD_ÔBJ:
SAVE OBJ:
SHOW CURR_OBJ:
SHOW_NEXT_OBJ: , ,
SHOW PREV OBJ: if GetPrevObject then ShowObject; { show prev object instance

' update object instance data }

enter object instance data }
load simulation objects from disk }
save simulation objects to disk }
show current object instance }

UPDATE_OBJ: GetObject(l);
UPDATE CLOCK: UpdateClock; ^

if GetNextObject then ShowObject; ^ show next object instance |

end;

REPORT_SIM:
ENTITY_DEP:
end;

ReportSimulation;
EntityDeparted;

update simulation clock }
print object detail}
entity has left system }

Figure 3-33. Simulation class messages

Î
rocedure EntClass(MsgPacket:Ms^acketType);
interface to the outside world }

begin
MData: = MsgPacket;
case MData.Message of

end;

CLEAR OBJ:
DELETE OBJ:
LOADOBJ:
SAVE OBJ:
SHOW" CURR_OBJ:
SHOWNEXT OBJ:
SHOWIPREVOBJ:
GEN_ARRIVAL:
REQ SQ_GRANTED:
REQ~SQ DENIED:
ENTrrYjSQ_COMP:
ENTITY_SET_FAIL:
ENTITY NO_FAIL:
LEAVE_SYS:
end;

Clear AllObjects;
if DeleteCurrObject t
LoadObjects;
SaveObjects;

ShowObject;

^ clear all data from objects }
ien ShowObject; { delete object instance }
load simulation objects from disk }
save simulation objects to disk }
show current object instance }

if GetNextObject then ShowObject; (show next object instance I
if GetPrevObject then ShowObject; { show prev object instance }
GenerateArrival; { generate an entity arrival}
RequestServQueGranted; { request for service/queue granted }
RequestServQueDenied; { request for service/queue denied }
Ser^ueComplete; { service/queue completed, need next route }
SetFail(True);
SetFail(False);
LeaveSystem;

set entity to fail service ^
set entity to not fail service }
entity leaves simulation }

Figure 3-34. Entity class messages

www.manaraa.com

76

Procedure RteClass(MsgPacket:MsgPacketType);
interface to the outside world }

begin
MData:=MsgPacket;
case MData.Message of
CLEAR_OBJ: ClearAllObjects; { clear all data from objects }
DELATE OBJ: if DeleteCunrObject then ShowObject; { delete object instance }
ENTER_OBJ:
LOAD OBJ:
SAVE "OBJ:
SHOW CURR
SHOW"NEXT
SHOWTREVOBJ:

GetObject(2);
LoadObjects;
SaveObjects;
OBJ: ShowObject;

enter object instance data }
load simulation objects from disk }
save simulation objects to disk }

{ show current object instance }

UPDATE OBJ:
GEN ARR_TIME:
GET">IEXT_RTE:
GET"ALT_RTE:
GET~FAIL RTE:

OBJ: if GetNextObject then ShowObject; ^ show next object instance |
if GetPrevObject then ShowObject; { show prev object instance

GetObject(l); { update object instance data }
GeneratCiAjrivalTime { determine which arrival to generate & when }
GetNextRoutefO);
GetNextRoute(l);
GetNextRoute(2);

GET FAIL RTRY: GetNextRoute(3)

end;

get next routing for an entity }
get next routing for an entity, denied before }
get failure route for an entity, failed service }
get failure route retry }

SCHJSQ_COMP: ScheduIeSrvQueCompletion; { schedule service/queue completion }
end;

Figure 3-35. Routing class messages

procedure SrvClass(MsgPacket:MsgPacketType);
{ interface to the outside world }
be^

MData; = MsgPacket;
case MData.Message of
CLEAR_OBJ: ClearAllObjects; { clear all data from objects }
DELETE OBJ: if DeleteCurrObject then ShowObject; { delete object instance }
ENTER_OBJ: GelObject(2); enter object instance data}
LOAD OBJ: LoadObjects; load simulation objects from disk }
SAVEjpBJ: SaveObjects; save simulation objects to disk }
SHOW_CURR_OBJ: ShowObject; { show current object instance }
SHOW^NEXT OBJ: if GetNextObject then ShowObject; f show next o
SHOW~PREV_OBJ: if GetPrevObject then ShowObject; { show prev object instance
UPDATE OBJ: GetObject(l); update object instance data}
REPORTSIM: ReportSimuIation;
REQ_SQ "ENTRY: RequestServiceQueueEntry;
SO COMPLETE: SrvQueCompletion;
ENTITY LEAVE SO: EntityLeaveSrvQue;
end;

end;

if GetNextObject then ShowObject; f show next object instance I
L_ r., , object instance}

-r J rR Hatn \
print object detail}
enti^ is requesting entry }
service/queue completion }
tell service/queue tnat entity has left}

Figure 3-36. Server/queue class messages

www.manaraa.com

77

procedures through the use of the Pascal case statement. Using the case statement

with messages in this fashion allows the use of standard Pascal in conjunction with

object-oriented programming techniques. The inherent speed and flexibility of the

structured language is thus maintained. Note that only 30 messages are required for

the entire simulation system.

G. Simulation Message Flow

The proper function of the object-oriented simulation program relies heavily

on the correct sequence of message passing between objects. The previous section

showed the specific messages used in the simulation program. This section

demonstrates the flow of messages during execution of the simulation program.

1. Generating arrivals

The first activity that must take place when the simulation is started is the

generation of the first arrival. The simulation clock is initialized to time zero. The

main loop of the program then issues a message to the routing object to schedule the

arrival of the next entity. Figure 3-37 shows the method that is invoked when the

GEN ARR TIME message is sent to the routing object.

Note how the method shown in Figure 3-37 generates an arrival time for the

future arrival of an entity. As stated previously, messages are placed in a single

queue ordered by the clock time of the message. Messages will not be passed on

until the current simulation clock is equal to or greater than the message time.

Arrival times are generated for the future and the associated message to actually

generate the arrival, GEN ARRIVAL, is placed in the message queue to be

executed at some future time. Scheduling of arrivals in this fashion creates an

www.manaraa.com

78

Ï
rocedure GenerateArrivalTime;
determine which arrivais to generate & when (entity types if Number=0.0) }

var
ATime: real;
Found: boolean;

begin
{ find the first route record for the desired entity instance & type }
TPtr:=PointTo(NINST,MData.Number);
while TPtr <> nil do be^

CurrObj: = TPtr; { display the object for reference }
PutObjtoBuffer;
ShowObject;
{ generate the arrival along with time (offset by simulation clock) }
ATime: = GetDistNumber(TPtr ̂ .Dkt,TPtr ̂ .Mean,TPtr .Std);
{ send message indicating that an entity of should be generated }
SendMsg(ROUTING,NINST,ENTITY,NINST,

GEN_ARRIVAL,TPtr ̂ .Ent'^e,MData.Clock+ATime);
{generate additional arrivals if desired }
u MData.Number < 0.0 then Exit;
repeat

TPtr: =TPtr .Next;
if TPtr < > nil then Found: = (TPtr ̂ .CurrLoc=NINST);

until ((TPtr=nil) or (Found));
end;

end;

Figure 3-37. GEN_ARR_TIME method in routing class

ordered queue of arrivals in a simulated future events calendar. Synchronization is

automatically maintained.

Figure 3-38 shows the method invoked when the GEN ARRIVAL message

is sent from the routing objects to the entity objects. Entity objects are created

dynamically when the GEN ARRIVAL message is invoked. The creation time and

other pertinent data are recorded for the entity. The entity object then issues a

message GET NEXT ROUTE to the routing objects to determine where the entity

should go. The entity object also issues another GEN ARRIVAL message at the

end of this method to schedule the next arrival, thus keeping the system moving.

www.manaraa.com

79

procedure GenerateArrival;
{ generate an arrival of an entity }
oe^

{ create a new entity }
u not GetNewObject then Exit;
{mark it's Instance id, arrival time, type code, status, etc...}
CurrObi .TypeCode:=MData J^umoer;
CurrObj ̂ .CreateTime:=MData.Clock;
PutObjInBuffer;
ShowObject;
{ request routing for self: "Where do I go?"}
Sen{£Msg(ENnTY,TPtr ̂ instance,ROUnNG,TPtr ̂ .CurrLoc,

GET_NEXT_RTE,TPTr ̂ .'I^eCode,SimClock);
generate next arrival of self }
endMsg(ENnTY,NINST,ROUTING,NINST,

GEN_ARR_TIME,TPtr ̂ .TypeCode,SimClock);
end;

Figure 3-38. GEN ARRIVAL method in entity class

2. Routing entities

After an entity object has been generated it must be routed to a queue or a

service. All information regarding the route of an entity through the system is

contained in the routing class. The ordered nature of the message queue guarantees

that there will be a message to the routing objects requesting the next route for an

entity after the entity has been created. This message is GET NEXT RTE. Figure

3-39 shows the method invoked in the route class upon receipt of the

GET NEXT RTE message.

The GET NEXT RTE method is the most complicated of all the messages

in the simulation system.There are four codes that can be passed to this method

depending on the previous state of the entity requesting a route. Initially, an entity

request a primary route. If the primaiy route is blocked when the request for entry

to a service or queue is made, then a balk route will be requested. In addition,

entities may be predestined to fail service. Under failure conditions, a failure route

may be specified by the user and that route will be requested when the failure occurs.

www.manaraa.com

80

J trocedure GetNextRoute(RouteCode:byte);
get the next routmg for an entity and send appropriate messages }

RouteCode: 0 - Get primary next location }
1 - Get alternate route after denial of primary }
2 - Get fail route after failure of service }
3 - Retry getting fail route after denial}

be^
{ find the first route record for the desired entity instance & type }
TPtr:=PointTo(MData.ToInst,MData.Number);
if TPtr=nil then Exit;
CurrObj:=TPtr;
PutObjInBuffer;
ShowObiect;
{if next location is blank, then leave system, otherwise request entry to location }
if (((TPtr ̂ .NextLoc=MNST) and (RouteCode in£0,11)) or

((TPtr ̂ .FailTo=NINST) and (RouteCode in p^]))) then begin
SendMsg(ROUTING,NINST,ENTITY,MData.FromInst,

LEAVE_SYS,0.0,SimClock);
end
else case RouteCode of

0:begin { no prior denials, try first location }
if TPtr .BalkLoc=NINST then

SendMsg(ENTITY,MData.FromInst,SERVQUE,TPtr .NextLoc,
REQ_SQ_ENTRY,0.0,SimClock)

else
SendMsg(ENTITY,MData.FromInst,SERVQUE,TPtr ̂ .NextLoc,

REQ_SQ_ENTRY,1.0,SimClock)
end;
l:if TPtr ̂ .BalkLoc=NINST then bemn

{ prior request failed, retry with clock incremented to next completion time }
SendMsg(ENTITY,MData.FromInst,SERVQUE,TPtr ̂ .NextLoc,

REQ_SQ_ENTRY,0.0,SimClock);
end
else begin { prior request denied, try alternate route }

SendMsg(ENTlTY,MData.FromInst,SERVQUE,TPtr ̂ .BalkLoc,
REQ_SQ_ENTRY,0.0,SimClock);

end;
2:begin { service failed, request failure route }

SendMsg(ENTITY,MData.FromInst,SERVQUE,TPtr .FailTo,
REQ_SQ_ENTRY,0.0,SimClock);

end;
3:begin { service failed, request failure route repeated }

SendMsg(ENTITY,MData.FromInst,SERVQUE,TPtr ̂ .FailTo,
REQ_SQ_ENTRY,0.0,SimClock);

end;
end;

end;

Figure 3-39. GET_NEXT_RTE method in routing class

www.manaraa.com

81

Whenever an entity is to be routed to a service or queue, the

REQ_SQ_ENTRY message is placed on the message queue at the current

simulation clock time. The route code to use is determined in the server/queue class

after the initial request for entry is made.

If there is no next route for an entity then the entity will be forced to leave

the system when the routing objects issue the LEAVE SYS message. The process

followed when an entity leaves the system is described later.

3. Requesting service or queue entry

The routing objects issue the REQ_SQ_ENTRY message to the

server/queue objects with data indicating the service or queue to request. The

method invoked in the server/queue class when the REQ_SQ_ENTR Y message is

received is shown in Figure 3-40. The capacity of the requested service/queue is

checked, and if space is available, the REQ SQ GRANTED message is sent to the

entity object. If the request is denied, then the server/queue object determines if an

alternate route is available or if the current request should be rescheduled. Note

that if the current request is rescheduled, the request is delayed until the next

completion time to avoid deadlocks in the system. If an alternate route should be

tried, then the REQ_SQ_DENIED message is sent to the entity.

Figures 3-41 and 3-42 show the methods invoked by the entity object upon

receipt of the REQ_SQ_GRANTED or REQ_SQ_DENIED messages. If entry to

the service or queue is granted the entity first sends a message to the previous

location that the entity is leaving. Next, a message is sent to the routing class to

request the end of service time for the new location. Figure 3-43 shows the method

invoked when the entity issues the EN1T1Y_LEAVE_SQ to the prior service or

queue object. Note that this method issues no further messages.

www.manaraa.com

82

?rocedure RequestServiceQueueEntry;
an entity is requesting entry }

begin
TPtr:=PointTo(MData.ToInst);
if TTtr=nil then Exit;
if TPtr ̂ .CurrQty< TPtr ̂ ..Capacity then be^ { entry is granted }

{set to busy status}
TPtr ̂ .SrvStatus:=BUSY;
TPtr ̂ .CurrQty:=TPtr ̂ .CurrQty+1.0; {increase current contents by one }
TPtr ̂ .TotalQty:=TPtr ̂ .TotalQty+1.0; {increase total quantity by one }
{ check for max quantity }
u TPtr .CurrQtyTPtr ̂ .MaxQty then TPtr ̂ .MaxQty.=TPtr .CurrQty;
{ check for min interarrivai time }
u (((SimClock-TPtr ̂ .LastAmval) > 0.0) and

(((SimClock-TPtr .LastArrival) > .MmTBA) or
(TPtr'^.MmTBA=0.0)))
then TPtr ̂ .MinTBA: = (SimClock-TPtr .LastArrival);

{ check for max interarrivai time }
u (SimClock-TPtr .LastArrival) > TPtr ̂ .MaxTBA then

TPtr ̂ .MaxTBA: = (SimClock-TPtr ̂ .LastArrival);
{ set mean time between arrivals }
TPtr ̂ .MeanTBA: = ((TPtr .MeanTBA*(TPtr .TotalQty-1.0)) +

(SimClock-TPtr ̂ .LastArrival))/lTtr ̂ .TotalQty;
{ set last arrival time }
TPtr .LastArrival:=SimClock;
{ send message indicating request was granted }
SendMsg(SERVQUE,TPtr .Instance,ENTITY,MData.FromInst,

REQ_SQ_GRANTED,0.0,SimClock);
end
else begin { send message indicating request denied }

if MData.Number=0.0 then { no alternate, retry current }
SendMsg(SERVQUE,TPtr ̂ .Instance,ENTITY,MData.FromInst,

REQ_SQ_DENIED,0.0,NextCompTime(TPtr .Instance))
else { there is an alternate route }

SendMsg(SERVQUE,TPtr .Instance,ENTITY,MData.FromInst,
REQ_SQ_DENIED,0.0,SimClock);

end;
CurrObj:=TPtr;
PutObjInBuffer;
ShowObject;

Figure 3-40. REQ_SQ_ENTRY method in server/queue class

www.manaraa.com

83

frocedure RequestServQueGranted;
request for service/queue was granted, move entity to new location }

be^
TPtr:=PointTo(MData.ToInst);
if TPtr=nil then Exit;
{ send message to prior location that entity is leanng }
SendMsg(ENnTY,TPtr ̂ .Instance,SERVQUE,TPtr ̂ .CurrLoc,

ENTITY_LEAVE_SQ,SimClock TPtr ^ .StartTime,SimClock);
{ set service failure flag"off }
TPtr ̂ .WillFail:=False;
{ set current location }
TPtr .CurrLoc:=MData.FromInst;
{ set current location start time }
TPtr ̂ .StartTime:=SimClock;
CurrOW: =TPtr;
PutObjmBuffer;
ShowObject;
{ send return message to indicate that entity is moved and completion should be scheduled }
SendMsg(ENTITY,TPtr ̂ .Instance,ROUTING,TPtr .CurrLoc,

SCH_SQ_COMP,TPtr ̂ .TypeCode,SimClock);

Figure 3-41. REQ_SQ_GRANTED method in entity class

procedure RequestServQueDenied;
{ request for service/queue was denied, attempt to reschedule/reroute }
begin

TPtr:=PointTo(MData.ToInst);
if TPtr=nil then Exit;
CiurObj: =TPtr;
PutObjInBuffer;
ShowObject;
if TPtr ̂ .WillFail then begin { entity was destined to fail service }
SendMsg(ENTIT Y.TPtr .Instance,ROUTING,TPtr ̂ .CurrLoc,

GET_FAIL_RTRY,TPTr ̂ .TypeCode,SimClock);
end
else begin { request alternate routing for entity }
SendMsg(ENTITY,TPtr ̂ .Instance,ROUTING,TPtr .CurrLoc,

GET_ALT_RTE,TPTr .TypeCode,SimClock);
end;

Figure 3-42. REQ SQ DENIED method in entity class

www.manaraa.com

I

84

Procedure EntityLeaveSrvQue;
tell service/queue that entity is leaving }

be^
TPtr:=PointTo(MData.ToInst);
if TPtr=nil then Ent ;
{ set avg contents and utilization }
TPtr ̂ AvgQty: = (((TPtr .TotalQty-l,0)*TPtr AvgQty) +

TPtr .CurrQty)/TPtr ̂ .TotalQty,
TPtr.Utilized:=TPtr^ AvgQty*100.0/TPtr^ .Capacity,
{ reduce current quantity by one }
TPtr ̂ .CurrQty;=TPtr ̂ .CurrQty-1.0;
if TPtr ̂ .CurrQty then TPtr .Sn^tatus: =IDLE;

iset min time here }
((MData.Number>0.0) and ((MData.Number < TPtr ̂ .MinTime) or

(TPtr ̂ .MinTime=0.0))) then TPtr ̂ .MinTime:=MData.Number;
{ set max time here }
u MData.NumberTPtr ̂ .MaxTime then TPtr ̂ .MaxTime: = MData.Number;
{ set mean time here }
TPtr ̂ .MeanTime: = ((TPtr ̂ .MeanTime*TPtr .TotalQty) +

MData.Niunber)/(TPtr .TotalQty+1.0);
CurrObj:=TPtr; PutObjlnBuffer; ShowObject;

Figure 3-43. ENTITY LEAVE SQ method in server/queue class

4. Scheduling completions

Figure 3-44 shows the method invoked when the routing object receives the

SCH_SQ_COMP message. Data are contained in the routing object for the current

entity that indicate the distribution to use to determine the end of service time for

an entity in a particular service. Entities in queues have no set completion time and

will proceed to the next routed location as soon as possible.

The software created in this research supports Uniform, Normal, and

Exponential distributions for service time. After the routing object has determined

the completion time for an entity, a SQ COMPLETE message is sent to the

server/queue object with the clock field set to the completion time. This message

will not be invoked until the simulation clock reaches the designated time. The

result is that the entity will remain in the service or queue until the desired

simulation time is reached. Failure percentages are examined in the

www.manaraa.com

85

rocedure ScheduIeSrvQueCompletion;
schedule service/queue completion }

var
ATime: real;

be^
{ find the route record for the desired entity instance & type }
TPtn=PointTo(MData.ToInst,MData JJumber);
if TPtr=nil then Ent;
CurrOW:=TPtr;
FutObjInBufFer;
ShowObject;
{ generate the completion time (offset by simulation clock) }
ATime:=GetDistNumber(TTtr ̂ .Dist,TPtr .MeanjITtr .Std) + SimClock;
if GetDistNumber('UNHlM'^0.0,50.0) < TPtr ^ .FailPerc then

{ set entity for service failure }
SendMsg(ROUnNG,NINST,ENTITY,MData.FromInst,

ENTITY_SET FAIL,O.OATime);
{ send message to schedule sendee/queue completion }
SendMsg(ROU'nNG,MData.FromInst,SERVQUE,TFtr ̂ .CurrLoc,

SQ_COMFLETE,0.0,ATime);
end;

Figure 3-44. SCH_SQ_COMP method in routing class

frocedure SetFail(Fail:boolean);
set entity fail service flag }

be^
TFtr:=FointTo(MData.ToInst);
if TFtr=nil then Exit;
{ update entity statistics here }
TFtr ".WillFail:=Fail;
CurrObj: =TFtr;
FutObjInBuffer;
ShowObject;

Figure 3-45. ENTTTY SET FAIL method in entity class

SCH_SQ_COMP method. If the entity is to fail the EN 111 V_SET_F AIL message

is sent to the entity to set the failure flag. This information is used in the routing

request methods described earlier. Figure 3-45 shows the method invoked in the

entity class upon receipt of the ENTITY SET FAIL message.

www.manaraa.com

86

procedure SrvQueCompletion;
{ service/queue completion }
be^

TPtr:=PomtTo(MData.ToInst);
if TPtr=nil tiien Exit;
CurrObj:=TPtr;
PutObjInBufFer;
ShowObject;
{ send message to indicate completion and next route is required }
SendMsg(SERVQUE,TPtr ̂ .Instance,ENTITY,MData.FromInst,

ENTITY_SQ_COMP,0.0,SimClock);
end;

Figure 3-46. SQ_COMPLETE method in server/queue class

Procedure ServQueComplete;
service/queue completed, need next route }

begin
TPtr:=PointTo(MData.ToInst);
if TPtr=nil then Exit;
CurrObj:=TPtr;
PutObjinBuffer;
ShowObject;
if TPtr ̂ .WillFail then begin { entity was destined to fail service }

SendMsg(ENTITY,TPtr ̂ .Instance,ROUTING,TPtr .CurrLoc,
GET_FAIL_RTE,TPTr ̂ ,TypeCode,SimClock);

end
else begin { send return message requesting next route }
SendMsg(ENTlTY,TPtr ̂ .Instance,ROUTING.TPtr ̂ .CurrLoc,

GET_NEXT_RTE,TPtr .TypeCode,SimClock);
end;

end;

Figure 3-47. EN l l l Y_SQ_COMP method in entity class

5. Completing service

Figure 3-46 shows the method invoked when the server/queue object receives

the SQ_COMPLETE message. Data contained in the server/queue object are

modified and a message is sent to the entity object indicating completion of service.

Figure 3-47 shows the method invoked when the entity object receives the

ENTITY SQ COMP message.

www.manaraa.com

87

When the ENTITY_SQ_COMP message is sent to the entity object, the

entity initiates a request for the next routing location with either the

GET NEXT RTE message or the GET_FAIL_RTE message depending on the

status of the failure flag. With the invocation of the request for next routing

location, the simulation has completed a cycle.

6. Leaving the system

If the next route for an entity is blank in the routing object, the entity will be

instructed to leave the system with the LEAVE SYS message from the routing

object. Figure 3-48 shows the method invoked when the entity object receives the

LEAVE SYS message. The entity object again uses the ENTITY LEAVE SQ

message described earlier to inform the server/queue object that an entity is leaving

the current location. In addition, the entity object issues the ENTITY_DEP

message to the simulation object to force simulation statistics collection. Figure

3-49 shows the method invoked when the simulation object receives the

ENTITY DEP message. Note that there are no messages generated by the

ENTTTY DEP method in the simulation class.

This chapter presented the structure of the simulation program. Through the

use of object-oriented programming the simulation system was constructed with only

4000 lines of Pascal code. The entire system, capable of a wide range of

discrete-event simulations, operates with only 30 different messages passed between

objects.

The next step in the use of the simulation program is the actual execution of

the software. The next chapter provides operational details of the simulation

software.

www.manaraa.com

88

frocedure LeaveSystem;
entity leaves simulation }

be^
TPtr:=PointTo(MData.ToInst);
if ITtr=nil then Ent;
{ send message to prior location that entity is leaving }
SendMsg(ENTITY,TPtr .Instance,SERvQUE,TPtr .CurrLoc,

ENnTY_LEAVE_SQ,SimClock-TPtr ̂ .StartTime,SimCIock);
{ update entity statisticThere }
TPtr ̂ .CurrLoc:=NINST;
TPtr ̂ .TimelnSys:=SimClock-TPtr ̂ .CreateTime;
CurrOW:=TPtr;
PutObjlnBuffer;
ShowObject;
{ send message indicating entity throughput}
SendMsg(ENTITY,TPtr ̂ .Instance,SIMULATE,NINST,

ENTITY_DEP,TPtr ̂ .TimelnSys,SimCIock);
{ delete the entity, no longer needed }
u DeleteCurrObject then;

end;

Figure 3-48. LEAVE_SYS method in entity class

procedure EntityDeparted;
{ an entity has left the system }
begin

{ set throughput}
CurrObj ̂ .CurrQty. = CurrObj ̂ .CurrQty+1.0;
{ set min time in system }
u ((MData.Number >0.0) and ((MData.Number > CurrObj .MinTInSys) or

(CurrObj ̂ .MinTInSys=0.0))) then
CurrObj ̂ .MinTInSys; = MData.Number;

iset max time in system }
MData.NumberCurrODj .MaxTInSys then CurrObj ̂ .MaxTInSys: = MData.Number;

{ set avg time in system }
CurrObj AvgTInSys: = ((CurrObj ̂ AvgTInSys* (CurrObj ̂ .CurrQty-1.0)) +

MData.Number)/CurrObj ̂ .CurrQty;
PutObjlnBuffer;
ShowObject;

end;

Figure 3-49. ENTTTY DEP method in simulation class

www.manaraa.com

89

IV. SIMULATION PROGRAM OPERATION

A. Introduction

The previous chapter described the internal operation of the object-oriented

simulation program developed in this research. This chapter provides information to

assist the user in the operation of the actual program.

Requirements of the program and procedures to start the program are

outlined first. Program menus are then described, followed by a presentation of

data entry methods. Commands used to load and save simulation data are given.

The balance of the chapter is devoted to techniques of running simulations using the

simulation program.

B. Starting the Program

The program is written in Turbo Pascal version 5.0 and is designed to operate

on standard MS-DOS microcomputers. The program requires the host machine to

have at least 320K of random access memory (RAM). In addition, the host machine

must have at least one floppy disk drive. A fixed disk is recommended for optimal

program operation. The program has been compiled to a standard executable

".EXE" file and does not require any additional interpreters to operate.

The name of the simulation program file is "SOOP.EXE." Several support

files with filename extensions of ".DBD", ".COl", ".C02", ".C03", and ".C04" are

located on the distribution disk. The "SOOP.EXE" file and all support files must be

present for correct operation of the program. The user should transfer all files

found on the distribution disk to a subdirectory on a hard disk or to a separate floppy

disk before attempting to execute the program.

www.manaraa.com

90

After the correct files have been transferred to the desired location the user

may start the simulation program by entering the "SOOP" command from the DOS

command line. A brief delay will occur while the program is loaded into computer

memory and all initialization is completed. The main program screen will then

appear.

The top line of the screen shows the name of the program, the current

message queue count, and the name of the simulation currently in memory. The

current simulation name will initially be blank. The center portion of the screen

displays one of the four class screens. The classes are "SIMULATION CLASS",

"ENTITY CLASS", "ROUTING CLASS", and "SERVER/QUEUE CLASS." Each

of these classes contains different information which is displayed to the user. Only

one class type is displayed at one time.

The user may change the currently displayed class by pressing the PgUp or

PgDn keys. Each keypress moves to the next or previous class. The display of object

classes is a circular linked list so repeated PgUp or PgDn keystrokes will rotate

through the classes.

Only one instance of an object will appear on the screen at one time.

Initially, there will be no instances of any of the objects. After the user loads a

simulation fi-om disk or enters data manually, there will be some instances of some

of the objects. The user may view different instances of an object by pressing the F5

or F6 function keys. The F5 key will display the previous instance of an object and

the F6 key will display the next instance of an object. The order of instances of

objects depends on their order of creation. Using the keystrokes described above,

the user can quickly move from class to class and from object to object.

www.manaraa.com

91

The bottom portion of the screen displays the program menus. The use of

the program menus is described in the next section.

C. Program Menus

Most of the program functions are executed through the list of commands

shown on the bottom portion of the screen. The "space", "backspace", "left arrow", or

"right arrow" keys may be used to highlight the desired command. A single line of

text describing the highlighted command will be shown on the last line of the screen.

To execute any of the program commands, the user may either highlight the desired

command and press the "enter" key or press the first letter of the desired command.

Some of the menus shown on the bottom of the screen will not allow

movement of a highlight bar. These command lists are distinguished by the absence

of a highlight bar on any one command. The user may select a command from this

type of menu by pressing the indicated letter or function key.

The selection of some commands will display another command list. The

user may move to a previous command list by pressing the "esc" key. Each command

list also has a "quit" command which will also serve to move to the previous

command list.

Occasionally the user will be presented with a vertical list of choices for some

of the program options. Selections from these lists are made by pressing the "up

arrow" or "down arrow" keys to highlight the desired option followed by pressing the

"return" key.

To quit the program and return to the DOS prompt the "quit" command

found on the main program menu is selected. Alternately, the "esc" key may be used

to quit from the program.

www.manaraa.com

92

D. Object Definition

To correctly configure the program for simulations the user must define the

objects for the desired simulation. There are four classes in this simulation program.

The user must enter data in the "simulation", "routing", and "server/queue" classes.

The "entity" class does not allow the user to enter data or create instances of an

entity object.

1. Data entry basics

The "Enter" command is used to enter new object instances to the program.

The "Update" command is used to update existing object instances. The user should

make sure the desired object is shown on the screen before using the "Enter" or

"Update" commands.

When entering data or updating data screens a flashing will appear on the

data screen to indicate where information is to be entered. A cursor will also show

the current position within a data field. Data fields are the highlighted areas in the

center portion of the screen. Only some of the data fields may be edited by the user.

The program automatically restricts data entry to allowable fields. The following

commands are available for data entry:

• [left or right arrow]: Moves the cursor within the current field. If the cur
sor is at the first position within a field then the previous field will be
selected. If the cursor is at the last position witWn a field then the next
field will be selected.

• [ctrl-left or ctrl-right]: Moves the cursor to the first position or to the last
character of a field.

• [up or down arrow]: Selects the previous or next data field for editing.

• [Enter]; Same as right arrow for selecting the next field.

• [F5]: Accepts changes made to the data screen and displays the previous
object instance. This command is only available in update mode.

www.manaraa.com

93

• [F6]: Accepts changes made to the data screen and displays the next ob
ject instance. If in enter mode, the new data screen will be void of data.

• [F8]: Blanks the current data Geld.

• [Esc]: Aborts changes made to the data screen and completes the
enter/update action.

• [FIO]: Accepts changes made to the data screen and completes the
enter/update action.

Data are required in all but the entity class of objects. The following sections

describe the data screens for each of the object classes.

2. Simulation class

Simulation class data are used to restrict the total run time for a simulation

and to track general simulation statistics. Only one instance of a simulation class

object is used to define a simulation for the program. Additional simulation object

instances that are entered will be ignored by the program. The following data fields

are available in simulation objects.

• Simulation Instance: This field contains a short name for the simulation
instance.

• Description: This field is used to describe the simulation instance.

• Maximum Time: This field contains the maximum time that the simula
tion is allowed to run measured in simulation time, not real time. When
the simulation clock reaches this time the simulation will automatically
stop.

• Current Time: This field shows the current value of the simulation clock.
The user may not modify this field.

• Current Throughput: This field shows the total number of entities that
have been processed through the system. This number includes all en
tities that have left the system regardless of the exit route. The user may
not modify this field.

www.manaraa.com

94

• Time In System (Min, Max, Avg): This field shows the minimum, maxi
mum, and average times that entities spend in the system. The user may
not modify these fields.

3. Entity class

The entity class contains instances of the entities that flow through the

simulation. Entities are automatically created and deleted by the software as

required by the simulation and as specified by the user. The user may not manually

create entities, but the user may view any currently existing entities. The following

data fields are found in the entity class.

• Entity Instance: This field contains a short name for the entity instance,

• Entity Type Code: This field contains a number used to identify the
general tj^e of entity. The software allows multiple types of entities to be
simulated. The entity types are classified in the routing class described
later.

• Current Location: This field indicates in which server/queue object in
stance the entity currently resides.

• Will Service Fail?: This field is used to predetermine entity failures in a
server/queue object instance. Failures are set by percentages in the rout
ing class described later.

• Entity Creation Time: This field marks the simulation time at which the
entity was created.

• Time Started Curr Loc: This field marks the simulation time at which the
entity entered the current server/queue object instance.

• Total Time In System: This field indicates the total time the entity spent
in the simulated system.

4. Server/queue class

The server/queue class contains an entry for each server and queue in the

defined simulation. Any point in a simulation where statistics are desired or where

www.manaraa.com

95

an entity is to spend some time must be defined as a server or queue object. The

user is responsible for the correct definition of servers and queues for the desired

simulation. The examples shown in the next chapter may serve as guidelines for the

definition of servers and queues. The following data fields are available in the

server/queue class.

• Server/Queue Instance: This field contains a short name for the serv
er/queue object instance.

• Description: This field is used to describe the server/queue instance.

• Server/Queue Cap: This field is used to limit the total capacity for the
server/queue instance. This field is normally set to 1 for servers but may
be set higher if more than one identical server is available. This field
should be set to a very large number if there is no limit on capacity.

• Current Quantity: This field shows the current number of entities in the
server/queue. The user may not modify this field.

• Maximum Quantity: This field shows the largest number of entities con
tained in the server/queue during the current simulation. The user may
not modify this field.

• Average Quantity: This field shows the average number of entities con
tained in the server/queue during the current simulation. The user may
not modify this field.

• Total Throughput: This field shows the total number of entities
processed through the server/queue during the current simulation. The
user may not modify this field.

• Percent Utilization: This field shows the utilization of the server/queue
during the current simulation. The user may not modify this field.

• Status: This field shows the current status of the server/queue. If the cur
rent quantity in the server/queue is less than the capacity, the status will
show the "idle" indicator. If the current quantity in the server/queue is at
capacity, the status will show the "busy" indicator. The user may not
modify this field.

• TBA (Minimum, Maximum, Mean): These fields show the minimum,
maximum, and mean time between arrivals at the server/queue. The user
may not modify these fields.

www.manaraa.com

96

• Time Spent Here (Minimum, Maximum, Mean): These fields show the
minimum, maximum, and mean time that entities have spent in this serv
er/queue. The user may not modify these fields.

• Last Time Arrival Occurred: This field shows the last simulation time
that an entity arrived at this server/queue. The user may not modify this
field.

5. Routing class

After the user has defined the servers and queues contained in the desired

simulation, the relationships between servers and queues must be defined. The

routing objects are used to define the paths that entities will take through the

simulated ^stem. Routing objects are also used to define the amount of time

(process time) that entities will spend at each server object. The user may modify

any of the fields in the routing class. The following data fields are available in the

routing class.

• Routing Instance: This field contains a short name for the routing in
stance.

• Desc: This field is used to describe the routing instance.

• Ent Type: This field is used to designate the type of entity to which this
routing instance applies.

• Current Location: This field contains the server/queue instance name
which is described by the routing object instance. For initial creation of
entities, this field should be left blank.

• Stay At Current Location (Distribution, Mean, Range or Std Dev): These
fields are used to describe the amount of time that an entity should
remain in the server/queue named in the "Current Location" field. The
distribution may be "UNFRM" for the uniform distribution, "EXPON" for
the exponential distribution, or "NORML" for the normal distribution.
The mean and range must be specified for the uniform distribution. The
mean must be specified for the exponential distribution. The mean and
standard deviation must be specified for the normal distribution.

www.manaraa.com

97

• Failure Percent: This field is used to specify the percentage of entities
that will fail the service named in the "Current Location" field. This field
is useful to create a routing split between two alternate paths. Several
routing instances with failure percentages may be linked together to pro
vide multiple split options.

• Failures Go To: This field is used to designate the next server/queue for
an entity that fails the current server/queue.

• Successes Go To: This field is used to designate the next server/queue for
an entity that succeeds the current server/queue. If the entity is to leave
the system after the current server/queue, this field should be left blank.

• Balks Go To: This field is used to designate the next location for an entity
that is not allowed to enter the "Successes Go To" server/queue because
the next location is at capacity. If balking is not allowed, this field should
be left blank. Blocked entities would then retry the server/queue
specified in the "Successes Go To" field until entry is allowed.

Proper definition of the objects is essential to the correct operation of the

simulation. If the user finds that the results of a simulation do not appear correct,

the data in the object instances should be examined.

E. Loading and Saving the Simulation

The objects in the simulation program contain a large amount of data.

Complex simulations may be comprised of many object instances. Specification of a

simulation is time-consuming and if possible should not be repeated.

The software created in this research allows the user to save simulation

specifications to a disk file to avoid repeating the data entry task. Simulations saved

to disk may later be loaded to rerun the simulation. Completed simulations may be

saved to disk to retain final or intermediate results for later review.

To save a simulation to disk, the user should select the "Save" command from

the program command list. The user will be prompted for a file name to save the

www.manaraa.com

98

simulation. The file name may be up to 8 characters. After the file name is entered

the simulation will be saved to disk. If a simulation with the same name already

exists on disk, the user will be asked if the existing simulation should be replaced.

To load an existing simulation from disk the user should select the "Load"

command firom the program command list. The user will be asked if the current

simulation should be cleared. The user will then be prompted for the name of the

simulation to load from disk. If the file name specified by the user exists, the

simulation will be loaded into memory and will be prepared for execution. If the file

name specified by the user does not exist, a new simulation will be created in

memory.

F. Running the Simulation

After the user has specified the desired simulation or loaded an existing

simulation specification from disk the simulation program will be prepared to

execute the simulation. The following guidelines provide information to assist the

user when running a simulation.

1. Starting the simulation

The "Proceed" command is used to start the simulation. The user should

ensure that the simulation has been completely defined before starting the

simulation. After the simulation has been started, the current message count

indicator will show the number of messages in the message queue as the simulation

proceeds. The command list will also change to show a "Pause" command instead of

the "Proceed" command.

The object instance that is shown on the screen when the simulation is started

will remain visible to the user during the simulation if single-step execution is not

www.manaraa.com

99

enabled. The data contained in the current object instance will change as the

simulation progresses. These data are shown to the user as they change.

2. Interrupting the simulation

At many times during the execution of a simulation the user may wish to stop

the simulation to examine or modify object instances. The "Pause" command is used

to interrupt the execution of a simulation. When the "Pause" command is selected,

the simulation will stop and the command list will change to show the "Proceed"

command instead of the "Pause" command.

Although other commands found on the command list may be used while a

simulation is in progress, only the "Pause" command should be used. If other

commands are used during simulation execution, the data in object instances may be

in an undefined state and will not be reliable.

3. Changing the simulation

Data in object instances may be changed while the simulation is interrupted.

Care should be used when altering instance data after a simulation has been started.

Modification is accomplished with the "Update" command. New instances of an

object may be added to the simulation with the "Enter" command. Changes to the

structure of the simulation during execution is often enlightening when testing the

effect of changes on the operation of a system.

4. Viewing alternate classes and objects

Under normal circumstances only a single class and object instance will be

shown to the user during simulation execution. It is often desirable to examine other

classes and object instances during a simulation. Selecting an alternate class or

instance of an object can be performed in either the paused or active execution

states.

www.manaraa.com

100

The user may select an alternate class for display by pressing the "PgUp" or

"PgDn" keys until the desired class is shown on the screen. Alternate instances of an

object may be displayed by pressing the "F5" or "F6" function keys until the desired

object instance is shown on the screen.

If alternate classes or object instances are selected while the simulation is in

progress a slight delay may occur while messages with high priority are processed.

Optimally, the simulation should be interrupted when changing to alternate classes

or object instances.

5. Restarting the simulation

After the simulation has been interrupted with the "Pause" command it may

be restarted with the "Proceed" command. Use of the "Proceed" command in this

fashion will restart the simulation at the point it was interrupted.

If the user desires to restart the simulation from time zero, the "Clr"

command should be used before the "Proceed" command. The "Clr" command

clears all data from the object instances. An alternate method to restart a simulation

from time zero is to use the "Load" command to load the same simulation from disk.

6. Single-step operation

Under the default simulation program parameters only the class and object

instance displayed when the simulation is started will be shown to the user during

program execution. To fully understand the object-oriented nature of the simulation

program developed in this research it is helpful to see the messages and results of

the messages as they are sent and received in the software. Viewing messages in this

fashion is called "single-stepping".

Single-step execution of the simulation program is enabled or disabled with

the "Options" command. When the "Options" command is selected from the

www.manaraa.com

101

command list a vertical list of program options will appear. The user should use the

"up arrow" or "down arrow to highlight the "Single-step" option and then press

"return" to toggle single-step execution on or off.

After single-step execution has been enabled, each message sent from one

object to another object will be shown at the bottom of the screen. When the

message is received by the target object, the message will again be shown at the

bottom of the screen. In addition, the target object instance will be shown to the

user.

The use of single-step execution allows insight to the flow of messages in the

object-oriented simulation software. Single-step execution drastically slows the

execution of the program and should be avoided unless specifically desired.

7. Printing reports

Printed output from a simulation is obtained with the "Report" command.

The simulation should be interrupted when the "Report" command is selected. The

"Report" command sends a message to each of the object instances asking for a

complete report of their contents. Each object will print a summary of its current

instance variables when it receives the report request.

www.manaraa.com

102

V. DATA COLLECTION AND ANALYSIS

A. Introduction

The major effort of this research is contained in the development of the

object-oriented simulation program. However, a degree of research analysis is still

required. There are two phases in the analysis portion of this research. First, the

output produced by the proposed program is compared to the output produced by a

traditional simulation language to verify the correctness of the object-oriented

simulation program. Second, the operating characteristics of the simulation

program will be compared to those of a traditional simulation language.

Three simulation models are presented for verification followed by a

complicated simulation. Object-oriented simulation is then compared to traditional

simulation.

B. Simulation Verification

Simulation software is complicated and difficult to create. The

object-oriented simulation program developed in this research contains over 4000

lines of Pascal source code. While it is possible to examine the output of the

simulation program for reasonableness, a more thorough method of program

verification is to compare the output produced by this software with the output

produced by established simulation language.

The simulation language used for comparison purposes is SLAM from

Pritsker and Associates. SLAM is used because of its popularity, availability on

microcomputers, and its reputation as a correctly functioning simulation program.

SLAM's process-orientation allows direct comparison with the object-oriented

simulation program developed in this research.

www.manaraa.com

103

The object-oriented simulation program is not intended to be a complete

simulation package but rather, to serve as a demonstration of the possibilities of

object-oriented programming for simulation in a procedural language. The

simulation program is capable of simulating systems with multiple servers and

queues. Arrival and service distributions may be selected from the uniform,

exponential, and normal family of distributions. Resource usage is not supported in

the simulation program.

Four simulation models are used to test the object-oriented simulation

program. The first three models are relatively simple and are designed to test the

basic correctness of the program. The fourth model is a complex combination of

simpler models and is used to demonstrate the advantages and capabilities of the

object-oriented simulation program. Statistics collected from both simulation

programs are presented for comparison.

1. Single-server model

Figure 5-1 shows the first simulation model used for verification. In this

system entities arrive exponentially with a mean of 0.4 time units. The service is also

exponentially distributed with a mean of 0.25 time units. Only four entities may wait

in the queue. If the queue is full when an entity arrives, the entity will be sent to a

subcontractor. The simulation is to be run for 300 time units. Figure 5-2 shows the

data the user would enter in the objects of the object-oriented simulation program.

The SLAM model for the single-server system is shown in Figure 5-3. The

system was simulated using both SLAM and the object-oriented simulation program.

A comparison of results fi^om the simulations is shown in Table 5-1. As shown, the

results are similar under both simulation programs.

www.manaraa.com

104

igure 5-1. Single-server queueing system

O O O O
Queue 1

to subcontract

Server 1

Simulation: TESTl Description: Single Server Queue

Routing: R1 Desc: Entity Creation
— - • —TON Mean: 0.40 1

Successes Go To: Q1
Desc: Enter Service 1 Ent T^pe: 1.0

Mean: 0.00 Range or Std Dev: 0.00
Successes Go To: SI

Desc: Finish Service 1

Failures Go To:
Routing: R2

Distribution:
Failures Go To:

Routing: R3

Server/Queue: 01
Server/Queue: SI
Server/Queue: SUBC

Failures Go To:
Routing: R4

Distribution:
Failures Go To:

Successes Go To:
Desc: Finish Subcontract Ent l^pe: 1.0

Mean: 0.00 Range or Std Dev: 0.00
Successes Go To:

Description: Oueue Number 1
Description: Service Number 1
Description; Subcontracted Parts

Ent l^ype: 1.0 Current Location:
Failure Percent: 0.00
Ballts Go To; SUBC
Current Location: Q1
Failure Percent; 0.00
Balks Go To:

Ent l^e: 1.0 Current Location: SI
Failure Percent: 0.00
Balks Go To:
Current Location: SUBC
Failure Percent: 0.00
Balks Go To:

Server/Queue Cap; 4.00
Server/Queue Cap; 1.00
Server/Queue Cap; 1.00

Maximum Time: 300.00

Figure 5-2. Object data for single-server model

GEN,DIESCH,SERIAL SINGLE SERVER,1/24/89,1;
LIMITS,2,2,50;
NETWORK;

CREATE,EXP0N(.4)„1; CREATE ARRIVALS
QUEUE(1),0,4,BALK(SUB); STATION 1 QUEUE
ACT/l,EXPON(.25); STATION 1 SERVER TIME
COLCT,INT(l),TIME IN SYSTEM,20/0/.25; COLLECT STATISTICS
TERM;

SUB COLCT,BET,TIME BET. BALKS; COLLECT STATISTICS
TERM;
END

INIT,0,300;
HN;

Figure 5-3. SLAM statements for single-server model

www.manaraa.com

105

Table 5-1. Simulation results for single-server model

SLAM SOOP

Maximum length of queue 1 4.00 4.00
Average wait time in queue 1 0.34 0.36
Total throughput of server 1 700 710
Total units to subcontract 42 45
Mean time between balks 6.28 6.05
Mean time in system 0.60 0.57

- o o o o —
Queue 1

fc. to subcontract

— O O -
Server 1 Queue 2 Server 2

Figure 5-4. Maintenance facility model

2. Maintenance facility model

There are two operations performed on the entities in the maintenance

facility shown in Figure 5-4. These operations are performed in series. Operation 2

always follows operation 1. The queue before work station 1 allows room for four

units and there is space for two units in the queue preceding work station 2. If an

arriving unit cannot enter the first queue it is sent to a subcontractor.

The interarrivai time for units entering the maintenance facility is

exponentially distributed with a mean of 0.4 time units. Service times are also

exponentially distributed with a mean of 0.25 time units for work station 1 and a

mean of 0.5 time units for work station 2. Transport time be tween work stations is

www.manaraa.com

106

Simulation: TEST2 Description: Maintenance Facility Maximum Time: 300.00

Routing: R1 Desc:
Distribution: EXPON
Failures Go To:

Routing: R2 Desc:
Distribution:
Failures Go To:

Routing: R3 Desc:
Distribution: EXPON
Failures Go To:

Routing: R4 Desc:
Distribution:
Failures Go To:

Routing: R5 Desc:
Distribution: EXPON
Failures Go To:

Routing: R6 Desc:
Distribution:
Failures Go To:

Entity Creation Ent l^pe: 1.0
Mean: 0.40 Range or Std Dev: 0.00

Successes Go To: Q1
Enter Service 1 Ent l^pe: 1.0

Mean: 0.00 Range or Std Dev: 0.00
Successes Go To: SI

Finish Service 1 Ent Type; 1.0
Mean: 0.25 Range or Std Dev: 0.00

Successes Go To: Q2
Enter Service 2 Ent l^pe: 1.0

Mean: 0.00 Range or Std Dev: 0.00
Successes Go To: S2

Finish Service 2 Ent T^re: 1.0
Mean: 0.50 Range or Std Dev: 0.00

Successes Go To:
Innish Subcontract Ent T^ype: 1.0

Mean: 0.00 Range or Std Dev: 0.00
Successes Go To:

Current Location:
Failure Percent: 0.00
Balks Go To: SUBC
Current Location: Q1
Failure Percent: 0.00
Ballts Go To:
Current Location: SI
Failure Percent: 0.00
Balks Go To:
Current Location: Q2
Failure Percent: 0.00
Balks Go To:
Current Location: S2
Failure Percent: 0.00
Balks Go To:
Current Location: SUBC
Failure Percent: 0.00
Balks Go To:

Server/Queue: Q1 Description: Queue Number 1
Server/Queue: SI Description: Service Number 1
Server/Queue: Q2 Description: Queue Number 2
Server/Queue: S2 Description: Service Number 2
Server/Queue: SUBC Description: Subcontracted Parts

Server/Queue Cap: 4.00
Server/Queue Cap: 1.00
Server/Queue Cap: 2.00
Server/Queue Cap: 1.00
Server/Queue Cap: 1.00

Figure 5-5. Object data for maintenance facility

GEN,DIESCH,MAINTENANCE FACILITY,1/24/89,1:
LIMITS,2,2,50;
NETWORK;

CREATE,EXPON(.4)„l;
QUEUE(1),0,4,BALK(SUB);

CREATE ARRIVALS CREATE,EXPON(.4)„l;
QUEUE(1),0,4,BALK(SUB); STATION 1 QUEUE
ACT/l,EXPON(.25); STATION 1 SERVER TIME
QUEUE(2),0,2,BLOCK; STATION 2 QUEUE
ACT/2,EXPON(.50); STATION 2 SERVER TIME
COLCT,INT(l),TIME IN SYSTEM,20/0/.25; COLLECT STATISTICS
TERM;

SUB COLCT,BET,TIME BET. BALKS; COLLECT STATISTICS
TERM;
END

INIT,0,300;
FIN;

Figure 5-6. SLAM statements for maintenance facility

www.manaraa.com

107

Table 5-2. Simulation results for maintenance facility

Maximum lenAh of queue 1
Average length of queue 1
Average wait time m queue 1
Maximum length of queue 2
Average length of queue 2
Average wait time m queue 2
Total throughput of server 1
Total throughput of server 2
Total units to subcontract
Mean time between balks
Mean time in system

SLAM SOOP

4.00 4.00
1.99 2.60
1.10 1.23
2.00 2.00
1.43 1.69
0.79 0.76
541 540
538 537
178 227

1.65 1.30
2.87 2.06

negligible. If the queue for work station 2 is full, the first work station is blocked

and units carmot leave that station. A blocked work station cannot serve other units

until it is unblocked.

The maintenance facility is to be simulated for 300 time units. Figure 5-5

shows the data the user must enter in the objects. Figure 5-6 shows the SLAM

statements required to simulate the maintenance facility. Table 5-2 shows the

results of the simulation using both SLAM and the object-oriented simulation

program. As shown, the results are similar.

3. TV inspection and adjustment model

In the system shown in Figure 5-7 assembled television sets move through a

series of testing stations. A final test is performed at the last of these stations. If the

sets fail the final test, the set is routed to an adjustment station where the set is

adjusted. After adjustment, the television set is sent back to the last inspection

www.manaraa.com

108

station where the set is again inspected. When the television set finally passes

inspection it is routed to a packing area. There is no limit placed on the number of

sets that may wait in any of the queues in the inspection system.

The time between arrivals of television sets for inspection is uniformly

distributed between 3.5 and 7.5 minutes. There are two identical inspectors at the

inspection station. The time required to inspect a set is uniformly distributed

between 6 and 12 minutes. On the average, 85 percent of the set pass inspection and

are routed to the packing area. The remaining 15 percent fail inspection and are

sent to the adjustment station. Adjustment requires between 20 and 40 minutes,

uniformly distributed.

The system is to be simulated for 480 minutes. Figure 5-8 shows the data the

user must enter in the objects of the object-oriented simulation program. Figure 5-9

shows the SLAM statements required to simulate the model. Table 5-3 presents the

results of the simulations using SLAM and the object-oriented simulation program.

As shown, the results obtained from both programs are similar.

The three test simulations serve to verify the correct operation of the

object-oriented simulation program. Under different conditions, the results

Return of adjusted sets

Adjust Queue
(no limit)

Arriving sets
Inspector

O O
Adjuster

Departure to packing

Waiting sets (no limit)
Inspector

Figure 5-7. TV inspection and adjustment system

www.manaraa.com

109

Simulation: TEST3 Description: TV Inspect & Adjust

Routing: R1 Desc: Entity Creation Ent I^pe: 1.0
Distribution: UNFRM Mean: 5.50 Range or Std Dev: 2.00
Failures Go To: Successes Go To: INSPQ

Routing: R2 Desc: Enter Inspection Stat. Ent 1^: 1.0
Distribution: Mean: 0.00 Range or Std Dev: 0.00
Failures Go To: Successes Go To: INS?

Routing: R3 Desc: Get Inspected Ent T^: 1.0
Distribution: UNFRM Mean: 9.00 Range or Std Dev: 3.00
Failures Go To: ADJTQ Successes Go To:

Routing: R4 Desc: Enter Adjustment Stat. Ent 1^: 1.0
Distribution: Mean: 0.00 Range or Std Dev: 0.00
Failures Go To: Successes Go To: ADJT

Routing: R5 Desc: Get Adjusted Ent Type: 1.0
Distribution: UNFRM Mean: 30.00 Range or Std Dev: 10.00
Failures Go To: Successes Go To: INSPQ

Maximum Time: 480.00

Current Location:
Failure Percent: 0.00
Balks Go To:
Current Location: INSPQ
Failure Percent: 0.00
Balks Go To:
Current Location: INSP
Failure Percent: 15.00
Balks Go To:
Current Location:ADJTQ
Failure Percent: 0.00
Balks Go To:
Current Location: ADJT
Failure Percent: 0.00
Balks Go To:

Server/Queue: INSPQ
Server/Queue: INSP
Server/Queue: ADJTQ
Server/Queue: ADJT

Description: Inspection Queue
Description: Inspection
Description: Adjustment Queue
Description: Adjustment

Server/Queue Cap: 999999.00
Server/Queue Cap: 2.00
Server/Queue Cap: 999999.00
Server/Queue Cap: 1.00

Figure 5-8. Object data for TV inspect & adjust model

GEN,DIESCH,TV INSP. AND ADJUST.,1/24/89,1;
LIMITS,2,2,50;
NETWORK;

CREATE,UNFRM(3.5,7.5)„1;
INSP QUEUE(l);

ACT(2)/1,UNFRM(6.,12.);
GOON;
ACT„.85,DPRT;
ACT„.15,ADJT;

ADJT QUEUE(2);
ACT/2,UNFRM(20.,40.).,INSP;

DPRT C0LCT,INT(1),TIME IN SYSTEM;
TERM;
END;

INIT,0,480;
FIN;

CREATE TELEVISIONS
INSPECTION QUEUE
INSPECTION

85% DEPART
15% ARE RE ADJUSTED
ADJUST QUEUE
ADJUSTMENT
COLLECT STATISTICS

Figure 5-9. SLAM statements for TV inspection and adjustment

www.manaraa.com

110

Table 5-3. Simulation results for inspection and adjustment

SLAM SOOP

Total throughput of inspection
Average contents of inspection station
Average utilization of inspectors
Average length of adjustment queue
Total units to adjustment
Total new arrivms
Minimum time in system
Maximum time in system
Mean time in system

140.00
26.50

101
1.96
0.98
1.27

15
86

6.18
184.67
29.06

99
1.98
0.99
1.29

12
85

6.42

obtained from SLAM and the object-oriented system are similar. The next section

demonstrates the simulation of a more complex system and further verifies the

integrity of the object-oriented simulation program.

4. An advanced simulation model

The previous simulation models served to verify that the object-oriented

simulation program is capable of performing correct simulated analyses. The model

described in this section shows that the object-oriented simulation program is

capable of modeling more complex systems.

One of the advantages of object-oriented programming is the modularity of

program design. This modularity carries over into the use of the software. Complex

simulations can be constructed through the combination of simpler models. The

system shown in Figure 5-10 is a combination of the maintenance facility and the TV

inspection and adjustment models.

Note that the model of Figure 5-10 represents the attachment of the output

from the maintenance facility to the input of two TV inspection and adjustment

www.manaraa.com

Ill

to subcontract

O O O O
Queue 1

Arrivals

Assembly 1 Queue 2 Assembly 2

Return of adjusted sets

Adjust Queue
(no limit)

O O -
Adjuster

Inspector Departure to packing

Waiting sets (max 10)
Inspector

balk to subcontract

Return of adjusted sets

Adjust Queue
(no iimit)

O O -
Adjuster

Inspector Departure to packing

Waiting sets (max 10)
Inspector

balk to subcontract

Figure 5-10. Complex TV inspection and adjustment system

www.manaraa.com

112

Simulation: TEST4 Description: Combination Facility Maximum Time: 480.00

Routing: R1 Desc: Entity Creation Ent Type: 1.0 Current Location:
Distribution: EXPON Mean: 0.40 Range or Std Dev: 0.00 Faiiure Percent: 0.00
Failures Go To: Successes Go To: Q1 Balles Go To: SUBC

Routing: R2 Desc: Enter Service 1 Ent T^pe: 1.0 Current Location: Q1
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00
Failures Go To: Successes Go To: Q2 Balks Go To:

Routing: R3 Desc: Finish Service 1 Ent l^pe: 1.0 Current Location: SI
Distribution: EXPON Mean: 0.25 Range or Std Dev: 0.00 Failure Percent: 0.00
Failures Go To: Successes Go To: Q2 Balks Go To:

Routing: R4 Desc: Enter Serwce 2 Ent 1^: 1.0 Current Location:Q2
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00
Failures Go To: Successes Go To: S2 Balks Go To:

Routing: R5 Desc: Finish Service 2 Ent Type: 1.0 Current Location: 82
Distribution: EXPON Mean: 0.50 Range or Std Dev: 0.00 Failure Percent: 50.00
Failures Go To: IQ2 Successes Go To: IQl Balks Go To:

Routing: R6 Desc: Finish Subcontract Ent Type: 1.0 Current Location: SUBC
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00
Failures Go To: Successes Go To: Balks Go To:

Routing: R7 Desc: Enter Inspection Ent Type: 1.0 Current Location: INSQl
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00
Failures Go To; Successes Go To: INSl Balks Go To:

Routing: R8 Desc: Inspection Station 1 Ent Type: 10 Current Location: INSl
Distribution: UNFRM Mean: 9.00 Range or Std Dev: 3.00 Failure Percent: 15.00
Failures Go To: ADJQl Successes Go To: Balks Go To:

Routing: R9 Desc: Enter Adjustl Queue Ent'I>pe:1.0 Current Location: ADJQl
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00

Routing: RIO Desc: Adjustment Station 1 Ent Type: 1.0 Current Location: ADJl
Distribution: UNFRM Mean: 30.00 Range or Std Dev: 10.00 Failure Percent: 0.00
Failures Go To: Successes Go To: INSQl Balks Go To: SUBIl

Routing: Rll Desc: Subcontract Inspect. 1 Ent T^pe: 1.0 Current Location: SUBIl
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00
Failures Go To: Successes Go To: Balks Go To:

Routing: R12 Desc: Enter Inspect Queue 1 Ent Type: 1.0 Current Location: INSQ2
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00
Failures Go To: Successes Go To: INS2 Balks Go To:

Routing: R13 Desc: Inspection Station 2 Ent T^pe: 1.0 Current Location: INS2
Distribution: UNFRM Mean: 9.00 Range or Std Dev: 3.00 Failure Percent: 15.00
Failures Go To: ADJQ2 Successes Go To: Balks Go To:

Routing: R14 Desc: Enter Adjust Queue 2 Ent TVpe: 1.0 Current Location: ADJQ2
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00
Failures Go To: Successes Go To: ADJ2 Balks Go To:

Routing: R15 Desc: Adjustment Station 2 Ent Type: 1.0 Current Location:ADJ2
Distribution: UNFRM Mean: 30.00 Range or Std Dev: 10.00 Failure Percent: 0.00
Failures Go To: Successes Go To; INSQ2 Balks Go To: SUBI2

Routing: R16 Desc: Subcontract Inspect 1 Ent Type: 1.0 Current Location; SUBI2
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00
Failures Go To; Successes Go To; Balks Go To:

Routing: R6-1 Desc: Temporary Queue 1 Ent l^pe: 1.0 Current Location; IQl
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00
Failures Go To: Successes Go To: INSQl Balks Go To: SUBIl

Routing: R6-2 Desc: Tenmorary Queue 2 Ent Type: 1.0 Current Location: IQ2
Distribution: Mean: 0.00 Range or Std Dev: 0.00 Failure Percent: 0.00
Failures Go To: Successes Go To: INSQ2 Balks Go To: SUBI2

Figure 5-11. Object data for advanced model, part 1

www.manaraa.com

113

Server/Queue:
Server/Queue:
Server/Queue:
Server/Queue:
Server/Queue:
Server/Queue:
Server/Queue:
Server/Queue:
Server/Queue:
Server/Queue:
Server/Queue:
Server/Queue:
Server/Queue:
Server/Queue:
Server/Queue:
Server/Queue:
Server/Queue:

Q1
51
Q2
52
SUBC
INSQl
INSl
ADJQl
ADJl
SUBIl
INSQ2
INS2
ADJQ2
ADJ2
SUBI2
101
IQ2

Description:
Description:
Description:
Description:
Description:
Description:
Description:
Description:
Description:
Description:
Description:
Description:
Description:
Description:
Description:
Description:
Description:

Queue Number 1
Service Number 1
Queue Number 2
Service Number 2
Subcontracted Parts
Inspection Queue 1
Inspection Station 1
Adjust Queue 1
Adjust Station 1
Subcon^act Insp 1
Inspection Queue 2
Inspection Station 2
Adjust Queue 2
AcQust Station 2
Subcontract Insp 2
Temporary Queue 1
Temporal Queue 2

Server/Queue Cap:
Server/Queue Cap:
Server/Queue Cap;
Server/Queue Cap:
Server/Queue Cap:
Server/Queue Cap:
Server/Queue Cap:
Server/Queue Cap:
Server/Queue Cap:
Server/Queue Cap:
Server/Queue Cap:
Server/Queue Cap:
Server/Queue Cap:
Server/Queue Cap:
Server/Queue Cap:
Server/Queue Cap;
Server/Queue Cap;

4.00
1.00
2.00
1.00
1.00
10.00
2.00
999999.00
1.00
1.00
10.00
2.00
999999.00
1.00
1.00
999999.00
999999.00

Figure 5-12. Object data for advanced model, part 2

facilities. Interarrivai times and service times remain the same. Subcontract outlets

are added to the TV inspection queues and the queues have been limited to a

capacity of 10 units.

The entire system is simulated for 480 time units. The data required in the

objects of the object-oriented simulation program are shown in Figures 5-11 and

5-12. The SLAM statements required to simulate this system are shown in Figure

5-13. Table 5-4 shows the results of the simulations performed with both SLAM and

the object-oriented simulation program. As in the three previous simulation tests,

the results are similar.

In theory, there is no practical limit to the combinations that may be

performed with the basic building blocks of the object-oriented simulation system.

The example models serve to verify the correct operation of the object-oriented

simulation program developed in this research. The next section presents a

comparison between SLAM and the object-oriented approach to simulation taken in

this research.

www.manaraa.com

114

GEN,PRTTSKER,COMBINATION SYSTEM,1/24/89.1;
LIMTrS,6,2,150;
NETWORK;

•SUBSYSTEM 1
CREATE,EXP0N(.4)„1; CREATE ARRIVALS
QUEUE(1),0,4,BALK(SUB1); STATION 1 QUEUE
ACT/l,EXPON(.25); STATION 1 SERVER
QUEUE(2),0,2,BLOCK; STATION 2 QUEUE
ACT/2,EXPON(.50); STATION 2 SERVER
GOON;
ACT„0^,INS1; NOW GOTO INSPECTION
ACT„0.5,INS2;

•SUBSYSTEM 2
INSl QUEUE(3),0,10,BALK(SUB2); INSPECTION QUEUE

ACT(2)/3,UNFRM(6.,12.); INSPECTION
GOON;
ACT„.85,DPRT; 85% DEPART
ACT„.15,ADJ1; 15% ARE RE ADJUSTED

ADJl QUEUE(4); ADJUST QUEUE
ACT/4,UNFRM(20.,40.)„INS1; ADJUSTMENT

•SUBSYSTEM 3
INS2 QUEUE(5),0,10,BALK(SUB3); INSPECTION QUEUE

ACT(2)/5,UNFRM(6.,12.); INSPECTION
GOON;
ACT„.85,DPRT; 85% DEPART
ACT„.15ADJ2; 15% ARE RE-ADJUSTED

ADJ2 QUEUE(6); ADJUST QUEUE
ACT/6,UNFRM(20.,40.)„INS2; ADJUSTMENT

DPRT C0LCT,INT(1),TIME IN SYSTEM; COLLECT STATISTICS
TERM;

•STATISTICS COLLECTION ROUTINES
SUBI COLCT,BET,TIME BET. BALKS I; COLLECT STATISTICS

TERM;
SUB2 COLCT,BET,TIME BET. BALKS 2; COLLECT STATISTICS

TERM;
SUB3 COLCT,BET,TIME BET. BALKS 3; COLLECT STATISTICS

TERM;
END

INTT,0,480;
FIN;

Figure 5-13. SLAM statements for advanced model

www.manaraa.com

115

Table 5-4. Simulation results for advanced model

Total throughput
Average lengtn of queue 1
Average wait time m queue 1
Average length of queue 2
Average wait time m queue 2
Throughput of assembly 1
Throughput of assembly 2
Subcontracted before assembly 1
Average length of inspection queue 1
Average wait time in inspection queue 1
Average length of inspection queue 2
Average wait time in inspection queue 2
Throughput of inspection station 1
Throughput of inspection station 2
Average length of adjustment queue 1
Average wait time in adjustment queue 1
Average length of adjustment queue 2
Average wait time in adjustment queue 2
Throughput of adjustment station 1
Throughput of adjustment station 2
Subcontracted before inspection station 1
Subcontracted before inspection station 2

SLAM SOOP

1080 1167
1.93 2.69
1.04 1.27
1.37 1.37
0.74 0.82
888 878
885 877
225 324
9.54 9.05

38.18 34.15
9.68 9.00

40.41 35.84
108 108
103 108
0.12 2.36
5.86 25.44
1.36 1.89

43.49 44.93
14 12
15 12

307 330
362 337

C. Object-oriented Versus Traditional Simulation

The simulations of the example models indicate that the end results of

traditional simulation are similar to the results obtained with the object-oriented

simulation program developed in this research. Assuming the correct construction

and operation of the object-oriented simulation program, comparative results are to

be expected. Differences between the two methods are an important component of

this research. This section presents a comparison of the two approaches to

simulation.

www.manaraa.com

116

One difference of note is the execution time of the two simulation programs.

The execution times for the first three example simulations were relatively close.

The execution time for the advanced simulation model with SLAM was

approximately 5 minutes. The same model simulated with the object-oriented

simulation program took approximately 40 minutes. Such a large discrepancy in

execution times presents a problem if object-oriented simulation is to be used in

practice.

It is likely that the large execution time for object-oriented simulation with

the software developed in this research is due to inefficiencies in the algorithms.

Concentration in this research was on the correct operation of the software, not the

efficient operation of the program. Careful construction of the program with less

concentration on user displays would greatly enhance the operational speed of the

program. The type of software development to achieve optimum performance is

costly and beyond the scope of this research.

While execution appears to be slower with the object-oriented software, the

measure of program execution time was made under nonvarying simulation

conditions. An advantage of the object-oriented simulation program is in the

interruptable nature of the program. If the user desires to modify the conditions

under which the simulation is performed, a simple command may be issued to

interrupt the object-oriented simulation while it is in progress. Changes may then be

made to the simulation characteristics and the simulation may be restarted. With

SLAM, the user must wait for the completion of the current simulation, modify the

SLAM statements, and rerun the simulation. Intermediate results would be more

difficult to collect. The total execution time under these conditions could easily be

higher than the time required for the object-oriented simulation.

www.manaraa.com

117

An important advantage of object-oriented programming is the ease at which

the underlying program can be enhanced to provide new capabilities. For example,

to add a new distribution to the simulation program a short section of code is added

to the routing class method that generates samples from probability distributions.

The code is then ready to draw from the new distribution. Messages used internally

by the software remain unchanged. The user need only modify the distribution

specified in the routing class data entry screen to use the new simulation.

The addition of a new type of probability distribution in SLAM would require

the addition of code to sample from the desired distribution as well as the addition

of code to correctly recognize the request for the new distribution in the SLAM

statements presented to the SLAM input translation program.

The differences between the two types of simulation software are most

apparent at the source code level. Screen displays, report formats, statistics

collection, and general simulation capabilities are more easily modified or extended

under the modular construction found in object-oriented systems.

www.manaraa.com

118

VI. CONCLUSIONS AND RECOMMENDATIONS

Several potential benefits may be derived from this research. Through the

use of object-oriented programming, simulation might be made applicable to a

larger base of simulation users in business and industry. More efficient planning and

better utilization of existing facilities would result in increased productivity.

An object-oriented simulation language might also better serve as an

educational tool for college level courses in simulation. With object-oriented

simulation, students could concentrate on the science of simulation rather than the

science of programming. The proliferation of simulation into the public sector

would increase as more students are educated in this area.

The primary goal of this research is to develop object-oriented extensions for

simulation in a strongly-typed procedural language. This research provides a base

from which future simulation languages may be built. The software industry is

turning toward object-oriented programming environments for operating systems

and many end-user programs. As multiprocessor, multitasking computers become

readily available, the object-oriented approach taken in this research will provide an

efficient vehicle for simulation program design. The inherent characteristics of the

object-oriented programming paradigm fit well with the parallel process

architecture that will be a part of the future of computing.

The result of the research is an object-oriented simulation language that may

be used in industry and classroom settings. At best, the simulation of a real-world

system should be constructed using the same terminology, methods, and skills

required to construct the real system. Most computer languages operate under the

"data-procedure" paradigm. Procedures (distinct sections of computer code) act on

data passed to them. Procedures must be prepared for every type of task required

www.manaraa.com

119

by the resultant program. Object-oriented languages employ a data or

"object-oriented" approach to programming. Instead of passing data to procedures,

the data (objects) perform operations on themselves.

Further, in object-oriented programming, the types of operations performed

on data can be developed in an abstract way so that a separate procedure is not

required for each operation. Instead, a "class" structure is used. A single class

provides all the information necessary to construct and use objects of a particular

kind (instances of a class). All operations on objects are carried out by passing

"messages" to an instance of a class. Messages in an object-oriented language occur

simultaneously and are automatically passed from class to class.

The object-oriented approach allows straightforward simulation modeling by

removing the simulation expert from the process. Little training in simulation

methods is necessary because the expertise required is already available through the

persons working with the real-world system.

Computers and computer simulation will become more complex in the

future. The advantages of object-oriented simulation will facilitate future simulation

research. Future research in object-oriented simulation should concentrate on the

optimization of methods used to implement the simulation functions. One area of

concentration could be the intelligent selection of messages from the message queue

when the queue contains messages of equal priority. Currently, the messages are

scanned in turn until an action can be taken. Intelligent selection would allow only

messages that are ready for execution to be retrieved from the message queue.

Other code segments could be optimized with assembly language subroutines.

Another area of future research is the investigation of object-oriented operating

systems to serve as the basis for object-oriented simulation programs.

www.manaraa.com

120

V. BIBLIOGRAPHY

Arthur, J. L.; Frendewey, James O.; Ghandforoush, Parviz; and Rees, Loren
Paul. "Microcomputer Simulation Systems". Computers and
Operations Research 13 (February 1986): 167-183.

Banks, Jerry; and Carson, John S. II. "Process-interaction Simulation
Languages". Simulation 44 (May 1985): 225-235.

Barnett, Claude C. "Micro PASSIM: A Modeling Package for Combined
Simulation using Turbo Pascal". Proceedings of the Conference on
Modeling and Simulation on Microcomputers (1985): 37-41.

Barnett, Claude C. "MICRO-PASSIM: A Combined Simulation Package for
a Microcomputer using UCSD Pascal". Proceedings of the
Conference on Modeling and Simulation on Microcomputers (1983):
92-95.

Barta, Thomas A. "Animated Simulation Graphics with GPSS". Proceedings
of the Conference on Modeling and Simulation on Microcomputers
(1985): 51-54.

Bell, Peter C.; and O'Keefe, Robert M. "Visual Interactive Simulation -
History, Recent Developments, and Major Issues". Simulation 49

(February 1984): 57-61.
Strongly Typed Languages

www.manaraa.com

121

10. Cammarata, Stephanie; Gates, Barbara; and Rothenberg, Jeff.
"Dependencies and Graphical Interfaces in Object-Oriented
Simulation Languages". 1987 Winter Simulation Conference
Proceedings (1987^: 507-517.

11. Carroll, John M. Simulation Using Personal Computers. Englewood Cliffs,
New Jersey: Prentice-Hall, Inc., 1987.

12. Cobbin, Philip. "SIMPLE l: A Simulation Environment for the IBM PC".
Proceedings of the Conference on Modeling and Simulation on
Microcomputers (1986): 243-248.

13. Concepcion, Arturo I. "The Implementation of the Hierarchial Abstract
Simulator on the HEP Compter". 1985 Winter Simulation
Conference Proceedings (1985): 428-434.

14. Cornish, Merrill. "AI Corner: What Would You Do with Object-Oriented
Programming if You Had It"? DirecTTons 5 (March 1988): 28-44.

15. Cox, Brad; and Hunt, Bill. "Objects, Icons, and Software-ICs". BYTE 11
(August 1986): 161-176.

16. Cox, B.J. Object-Oriented Programming; An Evolntionary Approach.
Reading, MA: Addison-Wesley, 1986.

17. Cox, Springer. "Interactive Graphics in GPSS/PC". Simulation 49
(September 1987): 117-122.

18. Cox, Springer; and Cox, Alice J. "GPSS/PC: A User Oriented Simulation
System". Proceedings nf the Conference on Modeling and Simulation
on Microcomputers (1985): 48-50.

19. Decker, H.; and Maierhofer, J. "Very High Level Model Description and
Simulation". Proceedings of the Conference on Simulation in Strongly
Typed languages 13 (February 1984): 44-48.

20. Duff, Charles B. "Designing an Efficient Language". BYTE 11 (August
1986): 211-224.

www.manaraa.com

122

21. Favreau, Romeo R.; and Marr, George R. Jr. "EzSIM - A Desktop Database
System for Simulation Development and Documentation".
Prnceedings of thft Cnnference on Mndftling and Simnlatinn nn
Micrncnmpnters (1986): 129-133.

22. Femhout, Paul D. "Simulating Interacting Intelligent Objects in C". AI
Ej^ert 4 (January 1989): 38-46.

23. Fisher, Edward L. "An AI-Based Methodology for Factory Design", AI
Magazine 7 (Fall 1986): 72-85.

24. Frantz, Frederick K; and Trott, Kevin C. "Extensions to Pascal for Discrete
Event Simulation". Proceedings of the Conference nn Simnlatinn in
Strongly Typp.H T angnages 13 (February 1984): 32-36.

25. Golden, Donald G. "Software Engineering Considerations for the Design of
Simulation Languages". Simulation 45 (October 1985): 169-178.

26. Grant, John W.; and Weiner, Steven A. "Factors to Consider in Choosing a
Graphically Animated Simulation System". Industrial Engineering 18
(August 1986): 37-68.

27. Haigh, Peter L.; and Bornhorst, Ellen M. "A User Friendly Environment for
Simulating Computer Systems". Prnrftp.Hings of the Conference on
Modeling and Simnlation on Micrncnmpnters (1986): 134-140.

28. HoUocks, Brian W. "Practical Benefits of Animated Graphics in Simulation".
1984 Winter Simnlatinn Cnnference Prnceedings (1984): 323-328.

29. Hoover, Stewart. "MICRO-SIM: A Simulation Package for
Microcomputers". Prnceedings of the Conference on Modeling and
Simulation nn Micrncomputers (1983): 87-91.

30. Hughes, D. J. F.; and Gunadi, H. "S/Pascal: A Portable Simulation Language
Based on Pascal". Proceedings of the Cnnference nn Mndeling and
Simnlatinn nn Micrncomputers (1984): 116-120.

31. Hurrion, R. D. "Visual Interactive Simulation Using a Microcomputer".
Cnmpnters and Operations Research 8 (April 1981): 267-273.

www.manaraa.com

123

32. JefiEèrson, David. "Future Directions in Simulation at the Conference on
Simulation in Strongly Typed Languages (Panel)". Proceedings of the
Conference nn Simnlatinn in Strongly Typed T angiiages 13 (February
1984): 123-124.

33. Johnson, Glen D.; Rector, Brent E.; and Mullarney, Alasdar. 'Tabletop
SIMSCRIPT'. Proceedings of the Conference on Modeling and
Simulation on Microcnmpnters (1983): 96-102.

34. Johnson, M. Eric; and Poorte, Jacob P. "A Hierarchical Approach to
Computer Animation in Simulation Modeling". Simulation 50
(January 1988): 30-36.

35. Kaehler, Ted; and Patterson, Dave. "A Small Taste of Smalltalk". BYTE 11
(August 1986): 145-158.

36. Karian, Zaven A.; and Dudewicz, Edward J. "Discrete-event Simulation on
Microcomputers". Proceedings of the Conference on Modeling and
Simulation on Microcompnters (1986): 146-150.

37. King, Christina U.; and Fisher, Edward L. "Object-Oriented Shop-Floor
Design, Simulation, and Evaluation". Fall Tndnstrial Engineering
Conference Proceedings M 986): 131-137.

38. Knapp, Vema. 'The Smalltalk Simulation Environment". 1986 Winter
Simulation Conference Proceedings (1986): 125-128.

39. Knapp, Vema. 'The Smalltalk Simulation Environment, Part 11". 1987
Winter Simulation Conference Proceedings nQ87V- 146-151.

40. Kootsey, J. Mailen; and Holt, Donald C. "A General-purpose Interactive
Control Program for Simulations on Microcomputers". Proceedings
of the Conference on Modeling and Simulation on Microcompiiters
(1984): 112-115.

41. Langlois, Laurent. "Simulation Visualization with SIMSEA, a General
Purpose Animation Language". Proceedings of the Conference on
Simulation in Strongly Typed T angnages 13 (February 1984): 62-67.

www.manaraa.com

124

42. L'Ecuyer, Pierre; and Giroux, Nataly. "A Process-Oriented Simulation
Package Based On Modula-2". 19S7 Winter Simulation Conference
EEûcefîdinga(1987): 165-174.

43. Levine, Robert I.; Drang, Diane E.; and Edelson, Barry. A Comprehensive
GniHe tn AT and F.xpert Systems. New York, New York:
McGraw-Hill, 1986.

44. Macintosh, J. B.; Hawkins, R. W.; and Sheppard, C. J. "Simulation on
Microcomputers - The Development of a Visual Interactive Modeling
Philosophy". 1984 Winter Simulation Conference Prnreeriings
(1984): 531-537.

45. MacLennan, Bruce J. Principles of Programming T angnageq. New York,
New York: CBS College Publishing, 1987.

46. Magnenat-Thalmann, Nadia; and Thalmann, David. "Procedural Animation
Blocks in Discrete Simulation". Simulation 49 (September 1987):
102-108.

47. Magnenat-Thalmann, N; and Thalmann, D. "Animated Types and Actor
Types in Computer Simulation and Animation". Proceedings of the
Conference on Simulation in Strongly Typed T angnages 13 (February
1984): 51-56.

48. Malloy, Brian; and Soffa, Mary Lou. "SIMCAL: The Merger of Simula and
Pascal". 1986 Winter Simulation Conference Proceedings (19S6);
397-403.

49. Marr, George R., Jr. "SIM BY INT - The Next Generation Simulation
Language". Proceedings of the Conference on Modeling and
Simulation on Microcomputers (1984): 121-123.

50. Mathewson, S.C. 'The Application of Program Generator Software and Its
Extensions to Discrete Event Simulation Modeling". ITH Transactions
16 (1984): 3-18.

51. McFall, Michael E.; and Klahr, Philip. "Simulation With Rules and Objects".
1986 Winter Simulation Conference Proceedings (19Rfi)r 470-473.

www.manaraa.com

125

52. Meerman, J. W. "Dynamic Systems Simulation with Personal Computers and
TUTSIM". Proceedings nf the Conference on Modeling and
Simiilatinn on Micrncnmpiiters (1983): 106-111.

53. Nance, Richard E. "Simulation Modeling: Two Perspectives". HE
Transactions 16 (1984): 2.

54. O'Keefe, Robert. "Simulation and Expert Systems - A Taxonomy and Some
Examples". Simulation 46 (January 1986): 10-16.

55. Pascoe, Geoffrey A. "Elements of Object-Oriented Programming". BYTF
11 (August 1986): 139-144.

56. Pountain, Dick. "Object-Oriented Forth". BYTE 11 (August 1986): 227-233.

57. Pratt, Charles A. "Catalog of Simulation Software". Simnlatinn 49 (October
1987): 165-181.

58. Pritsker, Alan B. Tntrnrinctinn to Simnlatinn and Slam TT. New York, New
York: John Wiley & Sons, Inc., 1986.

59. Reddy, Y. V. Ramana; Fox, Mark S.; Husain, Nizwer; and McRoberts,
Malcolm. 'The Knowledge-Based Simulation System". IEEE
Software 3 (March 1986): 26-37.

60. Rothenberg, Jeff. "Object-Oriented Simulation: Where Do We Go from
Here"? 1986 Winter Simulation Conference Proceedings (1986):
464-469.

61. Rozenblit, Jerzy W.; and Zeigler, Bernard P. "Concepts for
Knowledge-Based System Design Environments". 1985 Winter
Simnlatinn Cnnference Prnceedings (1985): 223-231.

62. Rozenblit, Jerzy W.; Sevinc, Suleyman; and Zeigler, Bernard P.
"Knowledge-Based Design of LANs Using System Entity Structure
Concepts". 1986 Winter Simnlatinn Cnnference Prnceedings (1986):
858-865.

www.manaraa.com

126

63. Ruiz-Mier, Sergio; Talavage, Joseph; and Ben-Arieh, David. 'Towards a
Knowledge-Based Network Simulation Environment". 19R5 Winter
Simulation Conference Proceedings (1985): 232-236.

64. Samuels, Michael L.; and Spiegel, James R. "The Flexible Ada Simulation
Tool (FAST) and its Extensions". 19R7 Winter Simulation
Conference Proceedings (19S7): 175-184.

65. Saydam, Timcay. "Process-Oriented Simulation Languages". Simnletter 16
(April 1985): 8-13.

66. Schriber, Thomas J. Simulation T Jsing GPSS. New York, New York: John
Wiley & Sons, Inc., 1974.

67. Schwetman, Herb. "CSIM: A C-based, Process-Oriented Simulation
Language". 1986 Winter Simulation Conference Proceedings
387-396.

68. Seila, Andrew F. "SIMTOOLS: A Software Tool Kit for Discrete Event
Simulation in Pascal". Simulation SO (March 1988): 93-99.

69. Shanehchi, J. "EXPRESS: A Man-machine Interface for Simulation".
Proceedings of the 1st International Conference on Simulation in
Manufacturing 1 (1985): 97-105.

70. Smith, B. J.; and Smith, M. Z. 'The Pascal/VS Simulation Tool: Overview
and Examples". Proceedings of the Conference on Simulation in
Strongly Typed languages 13 (February 1984): 27-31.

71. Smith, Richard L.; and Piatt, Lucille. "Benefits of Animation in the
Simulation of a Machining and Assembly Line". Simulation 48
(January 1987): 28-30.

72. Stairmand, Malcolm C.; and Kreutzer, Wolfgang. "POSE: A
Process-Oriented Simulation Environment Embedded in SCHEME".
Simulation 50 (April 1988): 143-153.

73. Standridge, Charles R. "Performing Simulation Project with The Extended
Simulation System (TESS)". Simulation 45 (December 1985): 283-291.

www.manaraa.com

127

74. Stein, Jacob. "Object-Oriented Programming and Databases". Dr. Dnhh's
Journal 13 (March 1988): 18-34.

75. Taha, HamdyA. Simulation MnHp.ling and STMNFT. Englewood Cliffs,
New Jersey: Prentice Hall, Inc., 1988.

76. Tesler, Lariy. "Programming Experiences". RYTR 11 (August 1986):
195-206.

77. Thesen, Ame. "Writing Simulations from Scratch: Pascal Implementations".
1987 Winter Simulation rnnfp.rence Proceedings n987V 152-164.

78. Ulgen, Onur M.; and Thomasma, Timothy. "Simulation Modeling in an
Object-Oriented Environment Using Smalltalk-80". 1986 Winter
Simulation Conference Proceedings ^1986^: 474-484.

79. Unger, Brian W. "Object Oriented Simulation". 1986 Winter Simulation
Conference Proceedings (1986): 123-124.

80. Vaucher, Jean. "Future Directions in Simulation Software (Panel)".
Proceedings of the Conference on Simulation in Strongly Typed
Languages 13 (February 1984): 122.

81. Vaucher, Jean. "Process-oriented Simulation in Standard Pascal".
Proceedings of the Conference on Simulation in Strongly Typed
languages 13 (February 1984): 37-43.

82. Wadsworth, Richard B. "MICRO-PASSIM with Graphics". Proceedings of
the Conference on Modeling and Simulation on Microcomputers
(1983): 103-105.

83. Zeigler, Bernard P. "Hierarchical Modular Modeling/Knowledge
Representation". 1986 Winter Simulation Conference Proceedings
(1986): 129-137.

84. Zeigler, Bernard P. "Hierarchical, Modular Discrete-event Modeling in an
Object-oriented Environment". Simulation 49 (November 1987):
219-230.

www.manaraa.com

128

85. Zeigler, Bernard P. "System-Theoretic Representation of Simulation
Models". TTR Transactions 16 (1984); 19-34.

86. Zeigler, Bernard P.; and Kim, Tag Gon. 'The DEVS Formalism:
Hierarchical, Modular Systems Specification in an Object Oriented
Framework". 1987 Winter Simulation Conference Prnrp.p.rtings
(1987): 559-566.

www.manaraa.com

129

vni. APPENDIX. SIMULATION SOFTWARE SOURCE CODE

www.manaraa.com

{ SOOP.PAS)

{$M 16384,16384,655360) { stacks i ze,heapmi n,heapmax)

program SOOP;
{//
// //
// Program: Simulation with Object Oriented Programming //
// Version: 1.0 //
// Revised: 1/89 //
// //
// Prepared by: Kurt H. Diesch //
// //
// Simulation with object-oriented programming (SOOP) //
// //
//)

{$I COHPDIRS.PAS) { compiler directives)

uses SOOPHSG; { message handling unit, the only unit aware of
all classes!)

begin
HessageHandler; { branch to Message Handler)

end.

{COHPDIRS.PAS)

($8+) { full boolean evaluation (always on))
{SF+) { force far calls)
{$!-) { I/O Checking off)
{$R-) { range checking off)
{$S+) { Stack checking off)
{$V-) { Var-string checking (always off))

{ SOOPDEFS.PAS)

{============= STANDARD DEFINITIONS

byte = $01; { background color (Blue))
byte = $13; C low color (Cyan on Blue) }
byte = $1F; C norm color (White on Blue))
byte = $31; { inverse color (Blue on Cyan))
byte = $1E; { headline color (Yellow on Blue))
byte = $4F; C error color (White on Red))
byte = $3E; C headline color (Green on Blue) >
boolean = FALSE; { computer beeper)

type
HenuSet
TimeStr
DateStr
Str12
HexStr

= Set of Byte;
= string [61;
= string [101;
= string[12];
= string [21;

LineArray = array [1..160] of byte;

Command = record
Line
Desc

end;

{ menu strings >
array [1..2] of string;
array [1..25] of string[80];

W

WindowPtr = "WindowArray;
WindowArray= record { space for saving screens >

Add: array [0..24,0..79] of word;
ULX,ULY,LRX,LRY ; byte;

end;

const

N0KEY=0; BACK=8; CR=13; ESC=27; SPACE=32; { keystrokes)
F1=187; F2=188; F3=189; F4=190; F5=191; F6=192; F7=193;
F8=194; F9=195; F10=196;
H0ME=199; ENDKEY=207; PGUP=201; PGDN=209; CTRLPGDN=246;
UP=200; LEFT=203; RIGHT=205; DOUN=208;
INSKEY=210; DELKEY=211; RTAB=9; LTAB=143;
CTRLLEFT=243; CTRLRIGHT=244; CTRLEND=245; CTRLH0HE=247;

PLF = #10; C print code mnemonics)
PCR = #13;
PCRLF= #13#10;
PFF = #13#12;

www.manaraa.com

CBack = #255#0;
CLow = #255#1;
CNorm

= #255#2;
CInv = #255#3;
CHead = #255#4;
CError = #255#5;
CHelp = #255#6;

CursorOn ; word =
CursorsIk : word =
CursorOff ; word =

EMPTYSET : MenuSet
ALLCHAR ; MenuSet
INTS MenuSet
REALS : MenuSet
WORDS MenuSet
YESNO MenuSet
YES MenuSet
NO MenuSet
HEXES MenuSet
TIMESET MenuSet
FILECHAR MenuSet

activates
activates
activates
activates
activates
activates
activates

background color)
low color }
normal color >
inverse color >
headline color }
error color }
help line color >

$0607; { default cursor >
$0507; { default block cursor }
$2020; { cursor off value }

= 11; C the empty set >
= [32..126]; (all printable set >
= [45,48..5n; { integer input set >
= [45,46,48..57]; { real input set >
= [48..57]; { integer input set >
= [78,110,89,121]; { yes/no set >
= [89,121]; { yes set >
= [78,110]; { no set >
= [48..57,65..70,97..102];{ hex set >
= [48..57,65,80,97,112]; { time set J

[33,35..41,45,48..57,64..90,96..123,125,126];

MENULINE = 22; C line to show menus }
MSGLINE = 24; { line to show messages >
HELPLINE = 25; { line to show help >
MAXCOMLIST = 127; { maximum # of command lists >

MinMem = $80; { minimum allowable memory >

var
ScreenAdr ; word; (screen address }
RetraceMode : boolean; { wait for retrace? >
IsMono : boolean; { is this a mono monitor? >
OrigTextAt : byte; { original text attribute >
SavedExitProc: pointer; { old ExitProc value >
0ldlnt24 : pointer; { old Int24 vector)
DosBreakState: boolean; (Initial state of DOS break }
CritError : word; (critical error number }
PASError : word; (error number }
AMSTError : word; { global error number >
CurrentCursor: byte; { current cursor mode >
CmdList : integer; { current command list }
CmdNum : array [1. .MaxComlist] of byte;

Commands
CurrCommand
VList
AHSTTop
OldScreen

: Command; { command list detail }
: integer; { current command to execute >
: array [0..20] of string[40];

'word;
WindowPtr;

{ top of heap >
{ screen storage >

OBJECT CLASS DECLARATIONS

const
MaxClasses = 4;
MAILMAN = 0; C
SIMULATE = 1; {
ENTITY = 2; {
ROUTING = 3; (
SERVQUE = 4; (

CLSNAMES : array [0

simulation class }
entity class >
routing class }

('MAILMAN','SIMULATE','ENTITY','ROUTING','SERVQUE');

[69,101,76,108,85,117];
[68,100,78,110,85,117];

CASES : MenuSet
KEYSET : MenuSet
FTYPESET ; MenuSet =

[65..69,72,73,78,80,82..84,87,89,97..101,
104,105,110,112,114..116,119,121];

DBFORMLEH = 50;
DBTITLELEN = 10;

type
DBTitleStr = string[DBTITLELEN];
DBFormStr = string[DBFORMLEN];

{ max formula length }
{ max title length >

{ title type string >
{ formula string type }

w

const
DBHAXRECLEN = 500 {
DBMINRECLEN = 14 {
DBMAXFIELDS = 100 {
DBMAXFLDLEN = 75 {
DBMINY = 3 {
DBMAXY 20 {

maximum size of a record }
minimum size of a record }
maximum number of database fields >
maximum field length >
min Y screen position >
max Y screen position >

www.manaraa.com

DBBBYTE : byte =0; { field defaults }
DBBCHAR : char = '
OBBEHTRY: string[6] = '000000';
DBBINT : integer = 0;
DBBREAL : real = 0.0;
DBBWORD : word = 0;
OBBHIN : byte =0; { allowable numeric ranges >
DBBMAX : byte = 255;
DBIHIN : integer = -32768;
DBIHAX : integer = 32767;
DBRHIN : real = -9.9999999999E+U;
DBRHAX : real = 9.9999999999E+14;
DBUHIN : word = 0;
DBUMAX : word = 65535;
DBCALC ; boolean = TRUE; { field def identifiers >
DBNCALC : boolean = FALSE;
DBMAND : boolean = TRUE;
DBNHAND : boolean = FALSE;
DBUTITLE: boolean = TRUE;
DBNTITLE: boolean = FALSE;
DBUPLOU : char = 'E';
DBLOUC : char = 'L';
OBUPC : char = 'U';
OBNKEY : char = 'N';

type
DBFieldPtr = "DBField;
DBField = record { input screen definition)

Title : OBTitleStr; (field title }
FType : char; { field type }
Len : byte; { field length >
Decs : byte; { decimal precision }
X : byte; { X position >
Y : byte; (Y position)
Page ; byte; { field page >
ALen : byte; { byte length of field)
AOfs : integer; { offset into record }
CCase ; char; { up/low conversion type }
Hand : boolean; { mandatory entry?)
Calc : boolean; { calculated field }
KType : char; { key: N}o D)ups U)nique >
OkSet : HenuSet; { allowable chars }
Form : DBFormStr; { formula for this field >
UTitle: boolean; { on screen w/title?)

end;

DBScrLineRec = record { screen line record >
Page : byte;
Line : byte;
Cont ; array [0..79] of word;

end;

DBFileRec = record { database definition file record >
case RType: byte of

0: (FieldDef: DBField);
1: (ScrLine : DBScrLineRec);

end;

DBBufPtr = 'DBBufArray;
DBBufArray = array [0..DBHAXRECLEN] of byte; { buffer >

DBFOataArray = array [0..DBHAXFLDLEN] of byte; { buffer >

DBFieldArray = array [0..DBHAXFIELDS] of DBFieldPtr;

MESSAGE TYPE DECLARATIONS

type

InstType = string[5]; { instance identifier type >

StatusType = (IDLE,BUSY,BLOCKED); { server status >

HsgType = (

NMSG, { nil message >

CLEAR_OBJ, { clear object data fields >
DELETE_OBJ, { delete an instance of an object >
ENTER_5BJ, { enter (user) new data for an object >
LOAD_OBJ, { load simulation objects from disk }
SAVE~OBJ, { save simulation objects to disk }
SHOW_CURR_OBJ, { show current instance of an object >
SHOW_NEXT_OBJ, { show next instance of an object >
SHOW_PREV_OBJ, { show previous instance of an object >
UPDATE_OBJ, { update (user) the data for an object >
UPDATE_CLOCK, { update the simulation clock }

www.manaraa.com

GEN_ARR_TIHE,
GEN_ARRIVAL,
GET_NEXT_RTE,
GET_ALT_RTE,
GET FAIL_RTE,
GET_FAIL RTRY,
REQ_SQ_ENTRY,
REQ_SQ GRANTED,{
REO_SQ DENIED, {
REO_SQ_COMP, {
SCH_SQ_COHP, (
SQ_COHPLETE, {
ENTITY SQ_COHP,{
ENTITY"LEAVE_SQ,
ENTITY SET FAIL,
ENTITY_NO_?AIL,
ENTITY DEP,
LEAVE_SYS,

determine arrival to generate & when }
general next arrival of an entity >
get next routing for an object >
request denied, get alternate route >
request service/queue after failure)
request denied after failure, retry >
entity request for service or queue >
request for service/queue granted >
request for service/queue denied >
request completion of service time >
schedule the completion of service >
a service has been completed >
tell entity it completed service/queue >
{ tell service/queue entity has left >
{ set an entity to fail service >
{ set an entity not to fail service >
{ entity has departed system >
{ tell entity to leave system >

REPORT_SIH, { report on the simulation >
END SIMULATION { end the current simulation }

);

HsgPacketPtr = "HsgPacketType;
HsgPacketType = record

FromCls : byte; { from class >
Fromlnst: InstType; { from instance >
ToCls : byte; { to class >
Tolnst : InstType; { to instance >
Message : MsgType; { the message >
Number : real; { number to pass }
Clock : real; { time to execute }
Next : MsgPacketPtr; { next message >

end;

const

ROUNDFACT:
NINST :
PRIORITY :

real = 0.1; { rounding for service denials }
InstType = ' { a nil instance id }
real = -1.0; { priority message flag >

SoopHsgs : array [0..30] of string[20] = (
•N1L_HESSAGE', { 0 }
'CLEAR OBJ', { 1 }
'DELETË_0BJ', { 2 }
'ENTER OBJ', { 3 }
'LOAD OBJ', { 4 }
'SAVE_OBJ', { 5 }
'SHOW CURR_OBJ', { 6 }
'SHOW"NEXT OBJ', { 7 }
«SHOW_PREV_OBJ', { 8 }
'UPDATE_OBJ', { 9 }
'UPDATE_CLOCK', { 10 }
'GEN ARR TIME', { 11 }
'GEN ARRIVAL', { 12 }
'GET_NEXT RTE', { 13 }
'GET_ALT_RTE', { 14 }
'GET FAIL RTE', { 15 }
•GET FAIL_RTRY', (16 }
'RE0]S0_ENTRY', { 17 }
•REQ_SQ GRANTED', C 18 >
'REO SO DENIED', { 19 }
'REQ SO COMP', { 20 >
'SCH"SQ_COMP', { 21 }
'SQ COMPLETE', { 22 > W
•ENTITY SO COMP', { 23 } ^
'ENTITY"LEAVE SO', C 24 }
'ENTITY_SET_FAIL', { 25 }
'ENTITY_NO_FAIL', { 26 }
'ENTITY DEP', { 27 }
'LEAVE SYS', { 28 }
'REPORT_SIH', { 29 }
'END SIMULATION' { 30 }

);

var
FirstMsg : HsgPacketPtr; { working pointer for messages }
SimName : string[8]; { name of current simulation >
CurrCls : byte; { currently displayed class >
SimClock : real; { current simulation time >
Paused : boolean; { is simulation paused? >
SStep : boolean; { is single stepping on? >
MsgCount : word; { current count of messages >

www.manaraa.com

; AHSTSCRN.ASH
; Fast screen writing routines

DATA SEGMENT BYTE PUBLIC

EXTRN ScreenAdr:UORO
EXTRN RetraceHoderBYTE

DATA ENDS

CODE SEGMENT BYTE PUBLIC

ASSUME CS:CODE,DS:DATA

PUBLIC FastUrite,ChangeAttribute
PUBLIC MoveFromScreen,MoveToScreen

;Pascal variables

;calculate Offset in video memory.
;0n entry, AX has Row, DI has Column
;0n exit, ES has ScreenAdr, 01 has offset

CalcOffset

DEC
MOV
HUL
DEC
ADD
SHL
MOV
RET

CalcOffset

PROC NEAR

AX
CX,50H
CX
DI
DI,AX
DI,1
ES,ScreenAdr

ENDP

;Row to 0..24 range
;CX = Rows per colum
;AX = Row * 80
;Column to 0..79 range
;DI = (Row * 80) + Col
;Account for attribute
;ES:DI points to Row,Col
;Return

(•procedure FastWriteCSt : String; Row, Col, Attr : Integer),-

;Urite St at Row.Col in Attr (video attribute) without snow

FUAttr EQU BYTE PTR [BP+6]
FUCol EQU WORD PTR [BP+8]
FURow EQU UORD PTR [BP+10]
FWSt EQU DUORD PTR [BP+12]

FastUrite

PUSH
MOV
PUSH
MOV
MOV
CALL
MOV
LDS
CLD
XOR
LODSB
XCHG
JCXZ
MOV
RCR
JNC
MOV

FWGetNext:
LODSB

MOV
CLI

FUUaitHoH:
IN
TEST
JNZ
RCR
JC

FUWaitH:
IN
RCR
JNC

FUStore:
MOV
STOSU
ST I
LOOP
JMP

FUMono:
LODSB

STOSU
LOOP

PROC FAR

BP ;Save BP
BP,SP ;Set up stack frame
DS ;Save DS
AX,FURow ;AX = Row
DI,FUCol ;DI = Colum
CalcOffset ;calculate offset
CL.RetraceMode ;Grab before changing DS
SI.FUSt ;DS:SI points to St[0]

;Set direction to forward
AX,AX ;AX = 0 AX,AX

;AX = Length(St);
AX.CX ;CX = Length; AL = Uait
FUExit ;If string empty, exit
AH,FUAttr ;AH = Attribute
AL,1 ;If RetraceMode is False
FUMono ; use "FUMono" routine
DX,03DAh ;point DX to CGA status

;Load next char into AL
; AH already has Attr

BX,AX ;Store video word in BX
;No interrt^its now

AL,DX ;Get 6845 status
AL,8 ;Vert retrace in progress?
FUStore ;If so, go
AL,1 ;Else, wait for end of
FUUaitNoH ; horizontal retrace

AL,DX ;Get 6845 status again
AL,1 ;Uait for horizontal
FUUaitH ; retrace

AX,BX ;Move word back to AX...
; and then to screen
;AUow internists!

FUGetNext ;Get next character
FUExit ;Done

;Load next char into AL
; AH already has Attr
;video word into place

FUMono ;Get next character

www.manaraa.com

FUExit:
POP DS ;Restore OS
MOV SP.BP ;Restore SP
POP BP ; Restore BP
RET 10 ;Remove panes and return

FastWrite ENDP

;procedure ChangeAttributeCNumber : Integer; Row, Col, Attr:
Integer);

;Change Number video attributes to Attr starting at Row,Col

CAAttr EQU BYTE PTR [BP+6]
CACol EQU WORD PTR [BP+8]
CARow EQU WORD PTR [BP+10]
CANumber EQU WORD PTR [BP+12]

ChangeAttribute PROC FAR

PUSH BP ;Save BP
MOV BP.SP ;Set 14> stack frame
MOV AX.CARow ;AX = Row
MOV DI,CACol ;DI = Column
CALL CalcOffset ;calculate offset
INC DI ;Skip character
MOV AL.CAAttr ;AL = Attribute
CLD ;Set direction to forward
MOV CXfCANunber ;CX = Number to change
JCXZ CAExit ;If zero, exit
CMP RetraceHode,1 ;Get wait state
JNE CANoWait ;lf RetraceHode is False

; use CANoWait routine
MOV AH.AL ;Store attribute in AH
MOV DX,030Ah ;Point DX to CGA status

CAGetNext:
CLI ;No interrupts now

CAWaitNoH:
IN AL,OX ;Get 6845 status
TEST AL,8 ;Check for vert, retrace
JNZ CAGo ;In progress? Go
RCR AL,1 ;Wait for end of hor.
JC CAWaitNoH ; retrace

CAWaitH:
IN
RCR
JNC

CAGo:
MOV
STOSB
STI
INC
LOOP
JHP

CANoWait:
STOSB
INC
LOOP

CAExit:
MOV
POP
RET

AL,DX
AL,1
CAWaitH

AL,AH

DI
CAGetNext
CAExit

DI
CANoWait

SP.BP
BP
8

;Get 6845 status again
;Wait for horizontal
; retrace

;Hove Attr back to AL...
; and then to screen
;Allow interrt4>ts
;Skip characters
;Look for next opportunity
;Done

;Change the attribute
;Skip characters
;Get next character
;Next instruction
;Restore SP
;Restore BP
;Remove params and return

ChangeAttribute ENDP

.******************************

W
;procedure HoveFromScreen{var Source, Dest; Length:Integer);

;Hove Length words from Source (video mem.) to Dest w/o snow

MFLength EQU WORD PTR [BP+6]
HFDest EQU DWORD PTR [BP+8]
HFSource EQU DWORD PTR [BP+12]

HoveFromScreen PROC FAR

PUSH BP ;Save BP
MOV BP,SP ;Set up stack frame
MOV BX,DS ;Save DS in BX
MOV AL,RetraceHode ;Grab before changing DS
LES DI,HFDest ;ES:DI points to Dest
LDS SI,HFSource ;DS:SI points to Source
MOV CX,HFLength ;CX = Length
CLD ;Set direction to forward
RCR AL,1 ;Check RetraceHode
JNC MFNoWait ; False? Use MFNoWait
MOV DX,03DAh ;Point DX to CGA status

www.manaraa.com

HFNext:
CLI

HFUaitNoH:
IN
TEST
JNZ
RCR
JC

HFUaitH:
IN
RCR
JNC

MFGo:
LODSU
STI
STOSU
LOOP
JHP

HFNoUait:
REP

HFExit:
MOV
MOV
POP
RET

AL.DX
AL,8
MFGo
AL,1
HFUaitNoH

AL.DX
AL,1
HFUaitH

HFNext
HFExit

HOVSU

OS.BX
SP.BP
BP
10

HoveFromScreen ENDP

;No interrupts now

;Get 6845 status
;Check for vert, retrace
;In progress? go
;Uait for end of hor.
; retrace

;Get 6845 status again
;Uait for horizontal
; retrace

;Load next vid. word to AX
;Allow interrupts
;Store video word in Dest
;Get next video word
;All Done

;That's iti

;Restore DS
;Restore SP
;Restore BP
;Remove params and return

procedure HoveToScreenCvar Source, Dest; Length : Integer);

Hove Length words from Source to Dest (vid. memory) w/o snow

HTLength
HTDest
HTSource

HoveToScreen

PUSH
MOV
PUSH
HOV
LES
LOS

EQU
EQU
EQU

PROC FAR

UORD PTR [BP+6]
DUORD PTR [BP+8]
DUORD PTR [BP+12]

BP
BP.SP
DS
AL.RetraceHode
DI,HTDest
SI,HTSource

;Save BP
;Set up stack frame
;Save DS
;Grab before changing DS
;ES:DI points to Dest
;DS:SI points to Source

HOV
CLD
RCR
JNC
HOV

HTGetNext:
LODSU
HOV
CLI

HTUaitNoH:
IN
TEST
JNZ
RCR
JC

HTUaitH:
IN
RCR
JNC

HTGo:
HOV
STOSU
STI
LOOP
JHP

HTNoUait:
REP

HTExit:
POP
HOV
POP
RET

CX,HTLength

AL,1
HTNoUait
DX,03DAh

BX,AX

AL,DX
AL,8
HTGo
AL,1
HTUaitNoH

AL.DX
AL,1
HTUaitH

AX.BX

HTGetNext
HTExit

HOVSU

DS
SP.BP
BP
10

;CX = Length
;Set direction to forward
;Check RetraceMode
;False? Use HTNoUait
;Point DX to CGA status

;Load next vid. word to AX
;Store video word in BX
;No interrupts now

;Get 6845 status
;Check for vert, retrace
;ln progress? Go
;Uait for end of hor.
; retrace

;Get 6845 status again
;Uait for horizontal
; retrace

;Move word back to AX...
; and then to screen
;Allow interrupts
;Get next video word
;All done

;That's altl

;Restore DS
;Restore SP
;Restore BP
;Remove params and return

W
o\

HoveToScreen ENDP

CODE ENDS

END

www.manaraa.com

unit SOOPGEN;
{ standard routines }

{$! COHPOIRS.PAS>

interface

uses Crt,Dos;

{$I SOOPOEFS.PAS> C include program defaults & settings >

{============ GENERAL SERVICE ROUTINES =%==================}

procedure Beep;
{ Puts 1/4 second of 440 Hz out on the speaker. >

function UserAbort:boolean;
{ allow user to abort an operation }

procedure Int240n;
{ enable new Int24 error handler }

procedure Int240ff;
{ restore original Int24 error handler >

procedure SetCursor(NewHode:byte);
(Turns current cursor block/on/off }

function InsHode:byte;
{ determine if Insert is off (0) or on (1) >

=============== SCREEN HANDLING ROUTINES ===========}

procedure FastWrite(St : string; Row, Col, Attr : Integer);
{ Writes St at Row,Col in Attr (video attribute) w/o snow }

procedure ChangeAttribute(Number, Row, Col, Attr ; Integer);
{ Change Number vid. attributes to Attr starting at Row,Col)

procedure HoveToScreenCvar Source, Dest; Length : Integer);
{ Moves Length words from Source to Dest w/o snow >

procedure HoveFromScreenCvar Source, Dest; Length : Integer);
{ Moves Length words from Source to Dest without snow }

procedure WriteFast(X,Y,SC:byte; Ststring);
{ write a string at X,Y in SC color >

procedure WriteAt(X,Y;byte; S:string);
{ write a string at X,Y with specified imbedded colors >

procedure UriteCaps(X,Y,C1,C2: byte; Sistring);
{ write a string with Caps bolded >

procedure WriteVert(X,Y,Nura,SC:byte; Chichar);
{ repeat a character vertically Num times in SC color >

procedure UriteVertStr(X,Y,SC;byte; S:string);
{ repeat a string vertically in SC color >

procedure ScroUW{ndow(ULX,ULY,LRX,LRY,SC:byte;
Num:shortint);

{ scroll area of the screen Num lines & clear to SC >

procedure SaveWindow(ULX,ULY,LRX,LRY:byte;
var SavetoiWindowArray);

{ put screen in window storage for later recall >

procedure RestoreUindow(var RestFrooiiUindowArray);
C restore a previously saved window }

procedure SaveLines(StartLine,NunLines:byte; var Saveto);
{ save a number of 80 column screen lines }

procedure RestoreLines<StartLine.NumLines:byte;
var RestFrom);

{ restore a number of 80 colum screen lines >

function GetScrChar(X,Y:l^te)zuord;
{ get character and attribute from screen }

procedure ChangeScr(ULX,ULY,LRX,LRY,SC:byte);
{ change screen attribute of defined rectangle >

====== ======= STRING MANIPULATION = }

function CharStr(Ch;char; Len:byte):string;
{ return a string with Len chars }

www.manaraa.com

function Value(S:String):real;
{ strips string S of blanks and converts to a real nunter >

procedure RoundIt(var R:real;Places:byte);
{ rounds R to Places accuracy >

function Equal(R1,R2:real):boolean;
{ check if 2 numbers are equal (removes rounding problem) >

function UpLoHStr(S:String;CType:char):String;
{ convert string to upper/lower case >

function StripLeft(S:string; Ch:char):string;
{ strips Ch from left of S >

function StripRight(S:String; Ch:char):string;
{ strips Ch from right of S >

function PadLeft(S;string; Ch:char; Len;byte):string;
{ pads S with Ch on left to length Len >

function PadR{ght(S:string; Ch:char; Len:byte):string;
{ pads S with Ch on right to length Len >

function CenterStr(S:string; Ch:char; Len:byte):string;
{ center string S in field of Ch, Len characters wide }

function BytetoHex(V:byte):HexStr;
{ convert a byte to it's hex string equivalent >

function HextoByte(H:HexStr):byte;
{ convert a hex string to it's byte equivalent >

function HakeStr(var FData; M,N:integer; FType:char);string;
{ make a string from some type of data }

function FullPath(InPath:string; AddSlash:boolean):string;
{ build a full '\' delimited path string >

procedure HakeBox{ULX,ULY,LRX,LRY,SC,BType,Barline:byte;
Title:string);

{ draw a frame 0=no frame 1=single, 2=double, 3,4 w/title
aY+1 Barline puts horizontal line >

implementation

{=====%======= GENERAL SERVICE ROUTINES ====================

procedure Beep;
{ Puts 1/4 second of 440 Hz out on the speaker. >
begin

if (not DefBeep) then Exit;
Sound(440); Delay(125); Nosound;

end;

function UserAbort:boolean;
{ allow user to abort an operation >
var

Ch : byte;
Regs : registers;

begin
UserAbort:=FaIse;
if Keypressed then begin

Regs.Ax:=SOOOO; { read keyboard >
Intr($16,Regs);
if Lo(Regs.Ax)=SOO then Ch:=128+Hi(Regs.Ax)
else Ch:=Lo(Regs.Ax);
UserAbort:=(Ch=ESC);

end;
while Keypressed do begin { clear keyboard buffer >

Regs.Ax:=$0000;
Intr($16,Regs);

end;
end;

function IOResultPrim:Uord;
{ Calls loResult for Int24 }
begin

lOResultPrim := lOResult;
end;

{$F+>
procedure
Int24(Flags,CS,IP,AX,BX,CX,DX,SI,DI,DS,ES,BP:Hord);interrupt
{ general purpose critical error handler }
type

ScrPtr = "ScrBuf;
ScrBuf = array [1..320] of byte;

www.manaraa.com

Display, OldLine: ScrPtr;
AH,AL ; byte;
OldAttr : ̂ te;
Row,CoI : integer;
Action : char;
ErrHsg : string;
ErrCode : word;
Ch ; shortint;
DevAttr : "word;
DevName : "char;

begin
ErrCode:=IOResultPrin); C call lOResult before to clear }
if IsHono then Display;=ptr($B000,Pred(HSGLI>JE)*160)
else Display:=ptr(SB800,Pred(HSGLINE)*160);
New(OldLine);
OldLine':=Display*;
AH:=Hi(AX);
AL:=Lo{AX);
Col:=WhereX;
Row;=UhereY;
OldAttr;=TextAttr;
ErrHsg:=";
if (AH and $80) = 0 then begin

ErrCode:=Lo(DI);
case ErrCode of

$00: ErrHsg
= Write protect';

$01: ErrHsg = Internal DOS';
$02: ErrHsg

= Hot ready';
$03: ErrHsg = Internal DOS';
$04: ErrHsg = Bad sector';
$05: ErrHsg

= Internal DOS';
$06: ErrHsg

=
Seek';

$07: ErrHsg Unknown media or bad disk
$08: ErrHsg

= Sector not found';
$09: ErrHsg = Printer out of paper';
$0A; ErrHsg = Write fault';
$08: ErrHsg = Read fault';
$0C: ErrHsg = General failure';
$00: ErrHsg = Bad FAT';
else ErrHsg

= Unknown';
end;
if ErrCode<>$09 then ErrHsg:=ErrHsg+
' error on drive '+Chr(AL+65);

end
else begin

DevAttr:= Ptr(BP, SI+4); { point to device word >
if (DevAttr* and $8000) <> 0 then begin { if bit 15 on >

Ch:=0;
repeat

DevNanie:=Ptr(BP,SI+$OA+Ch);
ErrHsg:=ErrHsg+DevNanie*;
Inc(Ch);

until (DevName'=Chr(0)) or (Ch>7);
ErrHsg;=ErrHsg + ' not responding';
ErrCode:=$02;

end
else begin

ErrHsgzF'Bad File Allocation Table';
ErrCode:=$00;

end;
end;
GotoXY(1,HSGLINE);
TextAttr:=ErrorC;
ClrEol;
WriteC ',ErrHsg,' — A)bort or R)etry7');
Beep;
repeat

Action:=Upcase(Readkey);
until Action in [#27,'A','R']; w
Display":=OldLine*; ^
Dispose(OldLine);
GotoXY(Col,Row);
TextAttr:=OldAttr;
case Action of

#27,'A'; begin
CritError:=ErrCode;
AX:=0;

end;
'R': begin

CritError:=0;
AX:=1;

end;
end;
ErrCode:=IOResultPrini; C call lOResult after to clear }

end;
<$F->

www.manaraa.com

procedure Int240n;
{ enable new Int24 error handler >
begin

GetIntVec($24,OldInt24); { save old lnt24 vector >
SetIntVec(S24.aint24); { install new error handler }
CritError:=0
PasError ;=0
AMSTError:=0

end;

(and set global errors to 0

procedure Int240ff;
{ restore original Int24 error handler >
begin

SetIntVec($24,0ldInt24); { restore old Int24 vector }
end;

procedure SetCursorCNewMode:byte);
{ turns cursor block/on/off }
var

Regs : Registers;
begin

with Regs do begin
AX := $0100;
BX := $0000;
CurrentCursor:=NewMode;
case NewMode of

0; CX:=CursorBlk;
1: CX;=CursorOn;
2: CX:=CursorOff;

end;
end;
Intr(S10,Regs);

end;

function InsHode:byte;
{ determine if Insert is off (0) or on (1) >
begin

InsHode:= (Hem[£0000:$0417] and $80) shr 7;
end;

{=====%======= SCREEN HANDLING ROUTINES ==================}

{$L SOOPSCRN} { load assembly language routines >
procedure FastWrite(St:string; Row,Col,Attr:Integer);

external;
procedure ChangeAttribute(Number,Row,Col,Attr:Integer);

external;
procedure MoveToScreen(var Source,Dest; Length:Integer);

external;
procedure HoveFromScreenCvar Source,Dest; Length:Integer);

external;

procedure WriteFast(X,Y,SC:byte; S:string);
{ write a string at X,Y in SO color >
begin

FastWrite(S,Y,X,SC);
end;

procedure UriteAt(X,Y;byte; S:string);
C write a string at X,Y with specified intedded colors >
var

Attrs : array [0..6] of byte Absolute BackC;
CAttr : byte; { current attribute >
Ps : byte; { current position >
Len : byte; { length of string >

begin
if Pos(#255,S)=0 then begin

FastWrite(S,Y,X,NormC);
Exit;

end;
CAttr:=NormC; { default to normal text >
Ps:=0;
Len:=0rd(s[0]);
while Ps<Len do begin

Inc(Ps);
if S[Ps]=#255 then begin

CAttr:=Attrs[Ord(S[Succ(Ps)])] ;
Inc(Ps,2);

end;
FastUrite(StPs].Y.X.CAttr);
Inc(X);

end;
end;

www.manaraa.com

procedure UriteCaps(X,Y,C1,C2: byte; S;string);
{ write a string in CI with Caps in C2 >
var

TStr : array [1..160] of byte;
Count : byte;

begin
FillChar(TStr,160,C1);
for Count:=1 to Length(S) do begin

Hove(S[Count],TStrtPred{Count*2)],1);
if S[Count] in then

TStr[Succ(Pred(Count*2)>]:=C2;
end;
HoveToScreen(TStr,MeratScreenAdr:(Pred(Y)*160+(Pred(X)*2))],
Length(S));

end;

procedure UriteVert(X,Y,Nuni,SC:byte; Ch:Char);
(repeat a character vertically Num times in SC color >
var

Count : byte;
begin

Count:=0;
while Count<Num do begin

FastUrite(Ch,Y+Count,X,SC);
Inc(Count);

end;
end;

procedure UriteVertStr(X,Y,SC;byte; S:string);
{ repeat a string vertically n SC color >
var

Count ; byte;
begin

Count;=0;
while Count<Length(S) do begin

FastUri te(S[Succ(Count}],Y+Count,X,SC);
Inc(Count);

end;
end;

procedure ScrollWindow(ULX,ULY,LRX,LRY,SC:byte;
Numrshortint);

{ scroll an area of the screen Num lines & clear to SC >
var

Regs : registers;
I,NC ; byte;
Buffer : LineArray;
BlankLine : string[80];

begin
if ((not RetraceHode) or (Num=0)) then with Regs do begin

if Num<0 then AH:=$06 { for scroll up >
else AH:=$07; { for scroll down >
AL:=Abs(Num); { scroll Num lines }
CX:=Pred(ULY) shl 8 + Pred(ULX);
DX:=Pred(LRY) shl 8 + Pred(LRX);
BH:=SC;
Intr($10,Regs);

end
else begin

NC:=Succ(LRX-ULX);
FillChar(BlankLine[1],NC,$20);
BlankLine[0]:=Chr(NC);
if Num>0 then begin

for I := Pred(LRY) downto ULY do begin
HovefrcmScreen(Hera[ScreenAdr:(Pred(I)*160+

(Pred(ULX) shl 1))],Buffer,NC);
HovetoScreenCBuffer.HemlScreenAdr:(1*160+

(Pred(ULX) shl 1))],NC);
end;
FastWrite(Blankline,ULY,ULX,SC);

end
else begin

for I := ULY to Pred(LRY) do begin
HovefromScreen(Hem[ScreenAdr:(I*160+

(Pred(ULX) shl 1))].Buffer.NC);
MovetoScreen(Buffer,Mem[ScreenAdr:(Pred(I)*160+

(Pred(ULX) shl 1))],NC);
end;
FastWrite{BlankLine.LRY,ULX,SC);

end;
end;

www.manaraa.com

procedure SaveUi ndowCULX,ULY,LRX,LRY:byte;
var SaveTo:UindowArray);

(put screen in window storage for later recall >
var

I.NC : byte;
begin

NC:=Succ(LRX-ULX);
for I := ULY to LRY do

MoveF romScreenCMem[ScreenAdr:(Pred(I)*160+
(Pred(ULX) shl 1))],SaveTo.AddfPred(I)],NC);

SaveTo.ULX:=ULX;
SaveTo.ULY:=ULY;
SaveTo.LRX:=LRX;
SaveTo.LRY;=LRY;

end;

procedure RestoreWindowCvar RestFroni:UindowArray);
{ restore a previously saved window >
var

I,NC : byte;
begin

NC:=Succ(RestFrom.LRX-RestFrom.ULX);
for I := RestFrom.ULY to RestFrom.LRY do

HoveToScreen(RestFroni.Add[Pred(I)], Hem [ScreenAdr:
(Pred(l) •160+(Pred<RestFroni.ULX) shl 1))1,NC);

end;

procedure SaveLines(StartLine,NumLines:byte; var Saveto);
{ save a nunber of 80 column screen lines >
var
I : byte;

begin
for I:=StartLine to Pred(StartLine+NumLines) do

MovefromScreen(Mem[ScreenAdr:Pred(I)*160],
Heni[Seg(Saveto):0fs(SaveTo)+((I-StartLine)*160)J ,80)

end;

procedure RestoreLines(StartLine,NumLines:byte;
var RestFrom);

{ restore a number of 80 column screen lines >
var I : byte;
begin

for I:=StartLine to Pred(StartLine+NumLines) do
MoveToScreen(Mem[Seg(RestFrom):Ofs(RestFrom)+

((I-StartLin e)*160)],Hem[ScreenAdr:Pred(I)*160],80)
end;

function GetScrChar<X,Y:byte):word;
{ get character and attribute from screen >
var

SCWord: Word;
begin

MoveFromScreenCMem[ScreenAdr:(PredCY)*160+
(Pred(X) shl 1))].SCWord,1);

GetScrChar:=SCWord;
end;

procedure ChangeScrCULX,ULY,LRX,LRY,SC:byte);
(change screen attribute of defined rectangle >
var

Line,Cols : byte;
begin

Cols:=Succ(LRX)-ULX;
for Line;=ULY to LRY do

ChangeAttributeCCols, Line, ULX, SC);
end;

{=======%====== STRING MANIPULATION ========== =======}

function CharStr(Ch:char; Len:byte):string;
{ return a string with Len chars > N
var

S ; string;
begin

S[0] := Chr(Len);
FillChar(S[11, Len, Ord(Ch));
CharStr := S;

end;

function Value(S:string):real;
{ strips string S of blanks and converts to a real number }
var

R : real;
Code : integer;

begin
while Pose ',S)<>0 do Oelete(S,Pos(• ',S),1);
if S[Length(S)]='.' then S;=S+«0';
Val(S,R,Code);
Value:=R;

end;

www.manaraa.com

procedure Roundit(var R;real;Places:byte>;
{ rounds R to Places accuracy >
var

SrString;
begin

Str(R:12:Places,S);
R:=Value(S);

end;

function Equal(R1,R2:real):boolean;
{ check if 2 numbers are equal (removes rounding problem) >
begin

Equal:=(Abs(R1-R2)<0.0000001);
end;

function UpLouStr(S:String;CType:char):String;
{ convert string to upper/lower case J
var

Prbyte;
begin

case CType of
'L': for P:=1 to Length(S) do if S[P] in then

SEP] :=Chr(Ord(S[P])+32);
'U': for P:=1 to Length(S) do S[P]:=UpCase(S[P]);

end;
UpLowStr:=S;

end;

function StripLeft(S:string; Ch:char):string;
{ strips Ch from left of S >
var

Done : boolean;
begin

Done:=(Length(S)=0);
while ((Length(S)>0) and (not Done)) do begin

Done:=(Copy(S,1,1)<>Ch);
if not Done then Delete(S,1,1);

end;
StripLeft;=S;

end;

function StripRight(S:string; Ch:char):string;
{ strips Ch from right of S }
var

Done : boolean;

begin
Done:=(Length(S)=D);
while ((Length(S)>0) and (not Done)) do begin

Done:=(Copy(S,Length(S),l)<>Ch);
if not Done then Delete(S,Length(S),1);

end;
StripRight:=S;

end;

function PadLeft(S:string; Ch:char; Len:byte):string;
{ pads S with Ch on left to length Len >
begin

while Length(S)<Len do S:=Ch+S;
PadLeft:=S;

end;

function PadRight(S:string; Ch:char; Len:byte):string;
{ p^s S with Ch on right to length Len }
begin

while Length(S)<Len do S:=S+Ch;
PadRight:=S;

end;

function CenterStr(S;string; Ch:char; Len:byte):str{ng;
{ center string S in field of Ch, Len characters wide }
var

TStr : string;
begin

TStr:=StripLeft(StripRight(S,' '),' ');
while Length(TStr)<Len do begin

TStr:=TStr+Ch;
if Length(TStr)<Len then TStr:=Ch+TStr;

end;
CenterStr:=TStr;

end;

function BytetoHex(V:byte):HexStr;
{ convert a byte to it's hex string equivalent >
const

HEXCHARS : array [0..15] of char = '0123456789ABC0EF'
begin

BytetoHex:=HEXCHARS[V div 16] + HEXCHARSCV mod 16];
end;

www.manaraa.com

function HextoByte(H:HexStr):byte;
{ convert a hex string to it's byte equivalent >
const

HEXCHARS : string[16] = •0123456789ABCDEF';
begin

H:=PadLeft(H,'0',2);
if ((Pos(H[1],HEXCHARS)>0) and (Pos(H[2],HEXCHARS)>0)) then

HextoByte:=Pred(Pos(H[1],HEXCHARS» shl 4 +
Pred(Pos(H[2],HEXCHARS))

else HextoByte:=0;
end;

function HakeStr(var FData; M,N:integer; FType:char):string;
{ make a string from some type of data >
var

A : string absolute FData;
B : byte absolute FData;
C : char absolute FData;
I : integer absolute FData;
L : longint absolute FData;
R : real absolute FData;
U : word absolute FData;
Y : boolean absolute FData;
TStr: string;

begin
case FType of

'A','E': TStr:=PadRight(A,' ',H);
'B': if H>0 then Str{B:H,TStr) else Str(B,TStr);
'C: begin

TStr:="+C; TStr:=PadRight(TStr,' ',H);
end;

'H': if H>0 then TStr:=PadLeft{BytetoHex(B),' ',M)
else TStr:=BytetoHex(B);

'I': if H>0 then Str(I:M,TStr) else Strd.TStr);
'L': if H>0 then Str(L:H,TStr) else Str(L,TStr);
'0': if Y then TStr:='On ' else TStr:='Off';
'R': Str(R:H:N,TStr);
•W: if H>0 then Str(W:M,TStr) else Str(W,TStr);
'Y': begin

if Y then TStr:='Y' else TStr:='N';
TStr:=PadLeft(TStr,• '.M);

end;
else TStr:=CharStr(' ',H);

end;
HakeStr:=TStr;

end;

function FullPath(InPath:string; AddSlash:boolean):string
{ build a full '\' delimited path string >
begin

case AddsIash of
True ; if InPath[Length<InPath)]<>'\' then

FullPath:=InPath+'\' else FullPath:=InPath;
False: if Length(InPath)<3 then FullPath:=InPath+'\'

else if Length(InPath)=3 then FullPath:=InPath
else FullPath:=StripRight(InPath,'\');

end;
end;

procedure MakeBox(ULX,ULY,LRX,LRY,SC,BType,Barline:byte;
Title:string);

{ draw a frame 0=no box, 1=single, 2=double, 3,4=w/title
aY+1 Barline puts line >

const
UUL : array [1. .2] of char = (#218,#2D1)
WUR array [1. .2] of char

= (#191,#187)
ULL ; array [1. .2] of char = (#192,#200)
ULR : array [1. .2] of char = (#217,#188)
UH array [1. .2] of char (#196.#205)
UV : array [1. .2] of char (#179,#186)
UCL ; array [1. .2] of char = (#195,#199)
UCR : array [1. .2] of char

= (#180,#182)
var

I,NC : byte;
TStr : string;
LType: byte;

begin
ScrollUindow(ULX,ULY,LRX,LRY,SC,0);
if BType>0 then begin

LType:=BType;
if LType>2 then Dec(LType,2};
NC:=Succ{LRX-ULX);
TStr;=CharStr(UH[LType],HC);
TStr[1]:=WUL [LType);
TStr [NC]:=UUR (LType);
FastUrite(TStr,ULY,ULX,SC);
WriteVert(ULX,Succ<ULY),Pred(LRY-ULY),SC,UV[LType]);
Wr i teVert(LRX,Succ{ULY),Pred(LRY-ULY),SC,UV[LType]);
TStr[1] :=WLL[LType];
TStr [NO :=WLR [LType];
FastWrite{TStr,LRY,ULX,SC);
if Barline>0 then begin

TStr:=CharStr(WH[1],NC);

www.manaraa.com

TStr[11;=watLType];
TStrtNC]:=UCRaType];
FastUrite(TStr,ULy+Bartine,ULX,SC);

end;
end;
if Length(Title)>0 then case BType of

0 : FastUrite(Title,ULY,ULX,SC);
1,2 : FastUriteC '+Title+' ',ULY,ULX+2.SC);
3,4 : FastWrite{Title.Succ(ULY),ULX+2,SC);

end;
end;

PROGRAM STARTUP AND FINISH

release heap space >
set text to original }
clear the screen >
turn the cursor on >
restore Dos Break State }

{

{$F+> procedure AMSTExit;
{ gracefully exit program >
begin

Release(AHSTTop); {
TextAttr:=OrigTextAt; {
ClrScr; {
SetCursor(l); C
SetCBreak(OosBreakState);{
Int240ff;
ExitProc:=SavedExitProc; {

end;
{$F->

restore original exit address }

procedure SetProgramlnit;
{ initialize program parameters >
var

Regs : registers;
ScHode: byte;
IsEga : boolean;
I : byte;

begin
SavedExi tProc;=Exi tProc;
Exi tProc:=aAHSTExi t;
GetCBreak(DosBreakState);
SetCBreak(False);
CheckBreak:=False;
Or i gTextAt :=TextA11 r;
with Regs do begin

AX;=$OFOO;

{ save original exit address >
{ set new exit address >
{ save Dos Break State >
(now turn it off }
{ Ctrl-Break checks off }
{ save original screen colors)
{ get screen mode & set param }

Intr($10,Regs);
ScHode:=AL;
AH := $12; C check if EGA installed and selected }
BL := $10;
CX := SFFFF;
Intr($10, Regs);
IsEga := (CX <> SFFFF);

end;
if ScHode = 7 then begin

= SBOOO; ScreenAdr
CursorOn := SOCOD;
CursorBlk := $080D;
BackC := $00;
LowC := $07;
NormC := $0F;
InvC := $70;
HeadC ;= $0F;
ErrorC := $0F;
HelpC := $70;

end
else ScreenAdr := $8800;

must be mono screen)
Address of mono screen >
default cursor for mono >
default mono block cursor >
background color >
low text color >
normal text color)
inverse color
headline color
error color

{ help line color

{ otherwise is color monitor >
RetraceMode := (ScHode<>7) and not(IsEga); { snow check }
IsHono:=(ScHode=7); (is this a mono monitor? >
CheckSnow:=RetraceMode; { set Turbo's retrace check >
TextAttr:=NormC; { set current program color >
Hark(AHSTTop); { setup top of heap pointer >
if MaxAvail>SizeOf(UindowArray) then New(OldScreeh)
else begin

FastWriteC
•Insufficient memory to run program....press any key',
12,10,ErrorC);

if Readkey<>#0 then ; Halt;
end;
Int240n; { enable new error handler >
ScroUUindowd, 1,80,25,NormC,0); { clear the screen >
SetCursor(2); { turn off the cursor }
if lnsMode=0 then Mem[$0000:$0417]:=Mem[$0000:$0417]+$80;
Nosound; { make sure speaker is off >
FillChar{CmdNum[1],HaxComList,1); { current command >
CmdList:=1; { current command list >
CurrCommand:=0; { current command }

end;

A

begin
SetProgramlnit;

end.

www.manaraa.com

unit SOOPGENI;

{SI COHPDIRS.PAS>

interface

uses Crt,Dos,SOOPGEN;

{=============== USER INPUT ROUTINES =======================>

function Getakey:byte;
{ get a keystroke and do UserTask while waiting >

procedure UriteHelp(S:string);
{ show S on HELPLINE of screen in HelpC color >

procedure UriteMsg(SC:byte; S:string);
{ show S on HSGLINE line of screen in SC color >

procedure Hsg(S:String);
< put S on screen and wait for keypress >

function GetBool(S:String):boolean;
{ put S on screen and wait a Y/N/Esc answer }

function ErrorCheck(ShowHsg:boolean):boolean;
{ check if there was an I/O or critical error >

procedure ErrorMsg(ErrNum:byte);
{ show error message >

funct ion Hi IightConmandCOpt ion:integer):boolean;
{ hi light conmand by number or first letter (0 hi Iites 1st) >

procedure RunCommand(Selection:byte);
{ hi light correct command and set command number)

function FileExist(FileNaine:string):boolean;
{ returns True if file exists. False if file does not exist >

function PrinterReadyiboolean;
{ get printer status >

funct ion Wri tePrt(S:string):booIean;
{ print and check for errors or user abort)

function GetListVCX,Y,NI,CV:integer);integer;
{ allow user to select from vertical list }

function HakeFileNameCvar TFile:Str12):boolean;
{ try to make a valid file name from string >

function KeyBoard(OkSet:HenuSet; Cursor:byte):byte;
{ gets a valid keystroke and optionally runs pop-ups >

procedure ShouMenu(Nun:byte);
{ show a menu in menu portion of screen >

function DBGetUorkingBuffers(var B1,B2,B3:DBBufPtr):boolean;
{ get buffers to store database records >

function DBMakeName(FName:string; FType,OptNun:byte):string;
{ make a filename >

procedure DBGetBuffer(var FOata; ObjBufferrDBBufPtr;
DFT:DBField);

{ get contents of buffer >

procedure DBPutBuffer(var FData; ObjBuffer:DBBufPtr;
DFT:DBField);

{ put contents into buffer >

procedure DBPutFieldDefCvar DFT:DBField;
Title:DBTitleStr;FType:char;
Len,Decs,X,Y,Page,ALen:byte;
AOfs:integer; CCase:char;
Hand,Calc:boolean; ICeyTyp;char;
OkSet:MenuSet; FomcDBFormStr;
UTitle:boolean);

{ put a definition into a DBField }

function DidHandatoryEntryCvar FData; DBT:DBField):boolean;
C check to see if this field has been entered }

procedure DBGetField(var FData; var Next:byte;DBT:DBFietd;
GType,SC:byte; ExRet;HenuSet);

{ field input 0=Update only 1=Update 2=Enter 3=Prompted }

function OBGetPronptedCvar FData; Prompt:string; FType:char;
X,Y,Len,Decs,Sc:byte; CCase:char; OkSet:MenuSet):boolean;

{ get prompted input from user >

www.manaraa.com

procedure DBGetNextField(var FldNuni:byte;Next:byte;
Obj F:DBFieldArray);

i get the next field for data entry based on next pointer >

function DBLoadDef(FHame:string;
ObjBuffer,ObjTBuffer,ObjBBuffer:DBBufPtr;
ObjF:DBFieldArray;
Ob j Screen:UindouPtr):booIean;

{ load database definition >

procedure ObjectInit(ObjNun:byte; var ObjScreen:WindowPtr;
var ObjBuffer,ObjTBuffer,ObjBBuffer:DBBufPtr;
var ObjF:DBFieldArray);

funct ion NextConpTiine(Inst : InstType) : reaI ;
{ return the next time for a message > SimClock >

procedure SendHsg(FromCls:byte;Fromlnst:lnstType; ToCls;byte
ToInstMnstType; Hessage:HsgType;
Number,Clock:real);

{ send a Message }

implementation

{============== USER INPUT ROUTINES

function Getakey:byte;
{ get a keystroke and do UserTask while waiting }
var

Regs ; registers;
begin

repeat until KeyPressed;
Regs.Ax:=SOOOO; { read the keyboard)
Intr(S16,Regs);
if Lo(Regs.Ax)=SOO then Getakey:=128+Hi(Regs.Ax)

else Getakey:=Lo(Regs.Ax);
end;

procedure UriteHelp(S:string);
{ show S on HELPLINE of screen in HetpC color >
begin

FastWriteCPadrightC '+S,' ',80),HELPLINE,I.HelpC);
end;

procedure WriteHsg(SC;byte; S:string);
{ show S on MSGLINE line of screen >
begin

FastWrite(Padright(« '+S,' ',80),MSGLINE,1,SC);
end;

procedure Msg(S:String);
(put S on screen and wait for keypress >
var

OldCursor : byte;
OldLine : LineArray;

begin
OldCursor:=CurrentCursor; C save old cursor mode >
SetCursor(2); C turn the cursor off >
SaveLines(MSGLINE,1,OldLine); { save screen >
WriteMsg(ErrorC,S+' (press any key)');
Beep;
if GetakeyoO then;
RestoreLines(HSGLINE,1,OldLine); { restore screen }
SetCursor(OldCursor); { restore previous cursor >

end;

function GetBool(S:String):boolean;
{ put S on screen and wait a Y/N/Esc answer > ^
var

OldCursor : byte;
Ch : byte;
OldLine ; LineArray;
Regs ; registers;

begin
OldCursor:=CurrentCursor; { save old cursor mode }
SetCursor(2); { turn the cursor off >
SaveLines(MSGLINE,1,OldLine); { save screen >
WriteMsg(ErrorC,S+' (Y/N)');
Beep;
repeat { get the response }

Ch:=Getakey;
if not (Ch in YesNo+[ESC]) then Beep; C beep if invalid >

until (Ch in YesNo+[ESC]);
RestoreLines(HSGLINE,1,OldLine); { restore screen }
SetCursor(OldCursor); { restore previous cursor >
GetBool:=(Ch in Yes);

end;

www.manaraa.com

function ErrorCheck(ShouHsg:boolean):boolean;
{ check if there was an I/O or critical error >
var

lOENum : integer;
lOHsg : string;

begin
IOENum:=IOResult; { call lOResult to clear >
if PASErroroO then IOENuni:=PASError;
if lOENunpO then IOENum:=PASError;
case lOENutn of

$01: IOHsg:='Invalid function number';
$02: IOHsg:='File not found';
$03: IOHsg:='Path not found';
$04: IOHsg:='Too many open files';
$05: IOHsg:='Read-only or duplicate file, or non-empty

directory';
$06: IOHsg:='Invalid file access code';
$07: IOHsg:='Memory control blocks destroyed';
$08: IOHsg:='Insufficient memory';
$09: IOHsg:='Invalid memory block address';
$0A: IOHsg:='Invalid environment';
$0B: IOHsg:='Invalid format';
$0C: IOHsg:='Invalid drive number';
$00: IOHsg:='Invalid data';
$0E: IOHsg:='Unknown I/O error';
$0F; lCHsg:='Invalid drive';
else IOHsg:='Unknown I/O error';

end;
if ((CritError=0) and (IOENum>0)) then begin

AMSTError:=(IOENum shl 8);
if ShowHsg then Hsg('Error: '+IOHsg);

end
else AHSTError:=CritError;
CritError:=0;
PASError :=0;
ErrorCheck:=(AHSTError<>0);

end;

procedure ErrorHsg(ErrNum:byte);
{ show error message }
begin

PASE rror:=ErrNum;
if ErrorCheck(True) then ;

end;

function Hi IightCommand(Option:integer):boolean;
{ hilight the command by number or first letter >
var
I : byte;
X.XI.Y : byte;
LX : byte;
TStr : string;
HChr : char;

begin
TStr:=Commands.Line[1]+Commands.Line[2]; { work string >
(get current X location >
I:=0;
LX:=Pos(':',TStr);
Delete(TStr,l,LX);
X:=1;
while KCmdNunCCmdList] do begin

Inc(X);
if TStrtX] in ['A'..'Z'] then Inc(I);

end;
MChr:=#0;
case Option of

0 : MChr:=TStr[X];
1 : begin (hilite next commnad >

repeat
if X=Length(TStr) then X:=1
else Inc(X);

until (TStrtX] in ['A'..'Z']);
HChr:=TStr[X];

end;
-1: begin { hilite previous command >

repeat
if X=1 then X:=Length(TStr)
else Dec(X);

until (TStr[X] in ['A'..'Z']);
HChr;=TStr(X];

end;
else begin { try to match a letter >

X:=Pos(Upcase(Chr(Opt ion)),TStr);
if X>D then HChr:=TStr[X];

end;
end; { case >
{ hilite the appropriate command and return command nun >
if HChr<>#0 then begin

Ur1teCaps(1.HENULINE,LowC,NormC,' '+
Commands.Lined]*' ');

www.manaraa.com

UriteCaps(1,SuccCMENULINE),LowC,NormC,' '+
Commands.Line[2]+' ');

X:=LX; Y:=HEHULINE;
TStr:=Coninands.Line[1] ;
CmdNumCCmdList]:=0;
repeat

Inc(X);
if X=Length(TStr) then begin

X:=1; Y:=Succ(HENULINE);
TStr:=Coinnands.Line[2] ;

end;
if (TStrCXl in then IncCCmdNumtCmdList]);

until (TStrIX]=HChr);
X1:=X;
while ((TStr[X1]<>« ') and (X1<Length(TStr))) do Inc(XI);
if TStr[X1)<>' ' then Inc(XI);
ChangeScr(X,Y,Succ(X1),Y,InvC);
WriteHelpCCommands.Desc[CmdNumCCmdList]]);

end;
HilightCommand:=(MChr<>#0);

end; { function HilightCommand }

procedure RunCoainand(Selection:byte);
{ hi light correct command, and set done to true if new menu }
var

OkCommand: boolean;
begin

OkCommand:=FaIse;
case Selection of

13 : OkCommand:=True; { run current command }
65..90,97..122 : OkCommand:=

HilightCommand(Ord(Upcase(Chr(Select i on))));
end;
if OkCommand then CurrCommand:=CmdNum[CmdList]
else Beep;

end;

function FileExist(FileName:string):boolean;
{ returns True if file exists. False if file does not exist >
var

SR : SearchRec;
begin

FindFirst(FileHame, Readonly + Hidden + SysFile, SR);
FileExist:=(DosError=0) and {Pos('?',FileName)=0) and

(PosC*', FileName)=0);
end;

function PrinterReady:boolean;
{ get printer status >
var

OldCursor : byte;
OldLine : LineArray;
Test : boolean;
Done : boolean;
Ch : byte;
Regs : registers;

begin
repeat

Done:=False;
Regs.Dx:=$0000; { select printer 1 >
Regs.Ax:=$0200; { request printer status >
Intr{$17,Regs);
Test:=((Hi(Regs.Ax) and 128)=128); { printer ready? >
if not Test then begin

OldCursor:=CurrentCursor; { save old cursor mode >
SetCursor(2); { turn the cursor off >
SaveLines(HSGLINE,1,OldLine);
WriteHsg(ErrorC,'Printer not ready, A)bort R)etry?');
Beep;
repeat

Ch:=GetaKey;
until Ch in [ESC,65,82,97,114];
Done:=Ch in [ESC,65,97];
RestoreLines(HSGLINE,1,OldLine);
SetCursor(OldCursor);

end;
until ((Done) or (Test));
PrinterReady;=Test;

end;

function UritePrt(S:string}:boolean;
{ print and check for errors or user abort >
const

PUait = 20000; { 20 second wait for timeout }
var

Regs : registers;
PAbort : boolean;
Chk ; byte;
TimeOut : word;

begin
if Length(S)=0 then begin

WritePrt:=True;
Exit;

www.manaraa.com

end;
PAbort:=ErrorCheckCF8lse);
while ((Length(S)>0) and (not PAbort)) do begin
if Keypressed then begin

Regs.Ax:=SOOOO; { read the keyboard >
Intr(S16,Regs);
if Lo(Regs.Ax)=SOO then Chk:=128+Hi(Regs.Ax)
else Chk;=Lo(Regs.Ax);
if Chk=ESC then PAbort:=

GetBooK'Print cancel requested. Ok to stop?');
end;
if not PAbort then begin

Regs.Dx:=$0000; { select printer 1 >
Regs.Ax:=0rd(S[1]); { output 1 character >
Intr($17,Regs);
Timeout:=0;
while (((Hi(Regs.Ax) and 128)=0) and

(TiineOut<PUait)) do begin
Inc(Timeout); Oelay(l);
Regs.Dx;=$0000; { select printer 1 >
Regs.Ax:=$0200; { request printer status >
Intr(S17,Regs);

end;
if Timeout=PWait then PAbort;=(not PrinterReady);
if not PAbort then Deleters,1,1);

end;
end;
while Keypressed do begin

Regs.Ax:=S0000; { clear the keyboard, just in case }
Intr(S16,Regs};

end;
WritePrt:=(not PAbort);

end;

function GetListV(X,Y,NI,CV:integer):integer;
{ allow user to select from vertical list }
var
I : integer;
LI : integer; { longest item)
CS : integer;
OldCursor : byte;
Ch,Ch1 : byte;
OkSet : HenuSet;
Dups : boolean;
TStr : string[1];
Title: string;

begin
OldCursor:=CurrentCursor; C save old cursor mode >
SetCursor(2); { turn the cursor off >
LI:=0; Dups:=False;
for I:=0 to Nt do if Length(VList[I])>LI then

LI :=Length(VList[n);
Dups:=False;
OkSet:=n;
for I:=1 to NI do begin t check for dups }

TStr;=Copy(VList[I],1,1); Chi;=Ord(Upcase(TStr[1]));
if (Chi in OkSet) then 0ups:=True
else begin

OkSet:=OkSet+[Chi];
if Chi in 165..97] then 0kSet:=0kSet+[Ch1+32];

end;
end;
if Dups then 0kSet:=[l;
SaveWindoH(X,Y,X+LI+3,Y+NI+3,0ldScreen*);
T i tle:=CenterStr(VL ist[0],' ',LI);
MakeBox(X,Y,X+LI+3,Y+NI+3,NormC,3,2,Title);
for I:=1 to NI do FastUrite(VListtI],Y+2+I,X+2,LowC);
if not Dups then ChangeScr(X+2,Y+3,X+2,Y+2+HI,NormC);
CS:=CV;
repeat { get the response >

ChangeScr(X+1,Y+2+CS,X+2+LI,Y+2+CS,InvC);
repeat

Ch;=GetaKey;
until Ch in OkSet+[CR,ESC,UP,DOUN];
ChangeScr(X+1,Y+2+CS,X+2+LI,Y+2+CS,LOHC);
if not Dups then ChangeScr(X+2,Y+2+CS,X+2,Y+2+CS,NormC)
case Ch of

32..126 : begin
CS:=1;
while UpLowStr(Copy(VList[CS],1,1),'U')<>

Upcase(Chr(Ch)) do Inc(CS);
Ch;=CR;

end;
UP ; if CS>1 then Dec(CS) else CS:=NI;
DOWN: if CS<NI then Inc(CS) else CS:=1;

end;
until (Ch in [CR,ESC]);
if Ch=ESC then CS:=0;
RestoreUindoM(OldScreen*);
SetCursor(OldCursor);
GetListV:=CS;

end;

www.manaraa.com

function HakeFileNatne(var TFile:Str12):boolean;
{ try to make a valid file name from string >
var
DotCount : integer;
IsOk : boolean;
I : integer;

begin
IsOk:=True;
TFile:=StripLeft(TFile,' ');
if TFileo" then begin { remove blanks >

while PosC ',TFîle)>0 do Delete(TFile,Pos(' ',TFile),1)
DotCount:=0; { count dots >
for I;=1 to Length(TFile) do if TFile[I]='.' then
Inc(OotCount);

case DotCount of
0 : IsOk:=(Length(TFile}<9);
1 ; IsOk;=((Pos('.*,TFile)<10) and (Pos('.',TFile)>1)

and ((Length(TFile)-Pos('.',TFile))<4));
else IsOk:=False;

end;
TFile;=UpLowStr(TFile, 'U');

end
else IsOk:=False;
if ((not IsOk) and (TFileo")) then
MsgCIllegal file name (must be XXXXXXXX.XXX form)');

MakeFileName:=IsOk;
end;

function Key8oard(0kSet:HenuSet; Cursor;byte):byte;
{ gets a valid keystroke and optionally runs pop-ups >
var

Ch : byte;
OldCursor : byte;
Regs : registers;

begin
OldCursor:=CurrentCursor;
SetCursor(Cursor);
repeat
Ch:=Getakey;
if not (Ch in OkSet) then Beep; { beep if invalid >

until (Ch in OkSet);
KeyBoard:=Ch;
SetCursor(OldCursor);

end;

procedure ShowHenu(Num:byte);
{ show a menu in menu portion of screen >

procedure DoMenul; { Main Menu >
begin

case Paused of
True : Commands.Line[1] :=

•MAIN MENU: Clr Delete Enter Load Opt
Proceed Report Save Update Quit';

False : Commands.Line[1] :=
•MAIN MENU: Clr Delete Enter Load Opt

Pause Report Save Update Quit^;
end;
Commands.Line[2] :=• •;
Commands.Descdl :=

•CLR - Clear data from all objects in the simulation'
Commands.Desc[2] :=

•DELETE - Delete object instance from current class';
Commands.Desc[3] :=

'ENTER - Add new object instance to the current class
Commands.Desc[4] :=

'LOAD - Load a simulation from disk or create new one
Commands.OesclS] :-'OPT - Miscellaneous program options
case Paused of

True : Commands.Desc [6] :=
'PROCEED - Proceed with the current simulation';

False:Co«nmands.Desc[6] :='PAUSE • Pause the simulation
end;
Commands.Desc[7] :='REPORT - Print simulation reports';
Commands.Desc[8] :='SAVE - Save simulation to disk';
Commands.Desc[9] :='UPDATE - Update the current object•
Conmands.DescllO]:='QUIT - Quit this program^;

end;

procedure DoMenul26; { record update >
begin

Commands.Lined] :=' '+CLow«-' '+CNorm*
' '+CLOW+' '+CNorm+'F5'+CLow+
'=Prev Record '+CNormf' '+CLow+'
CNorm*' '+CLOW+' ';

Commands.Line[2]:=' '+CLow+' '+CNorm»
• •+CLow+^ •+CNorm+^F6^+CLow+
•=Next Record •+CNorm+^F8'+CLow+'=Blank Field
CNorm«-'F10'+CLow+^=Accept ';

end;

www.manaraa.com

procedure DoHenu127; C record entry >
begin
Commands.Lined] : = ' '+CLow*' 'tCNorm*' '+
CL0W+' '+CNorm+' '+CLow+
• '+CNorm+' '+CLOW*' '+
CNorim-' '•CLOW+'

Commands.Line[2]:=' '+CLow*' '+CNormf' '+
CLOW+' '+CNorm+'F6'+CLow+'=Next Record'
CNorm+'F8'+CLow+'=Blank Field '+
CNorm+'F10'+CLow+'=Accept

end;

begin
ScrollWindow(1,MENULINE,80,MENULINE+2,NormC,0);
case Hum of

1 : DoMenul; { main menu >
126: DoMenu126; { update record }
127: DoHenu127; { enter record >

end;
if Num<100 then begin

WriteCaps(1,23,LowC,NormC,' '•Commands.Line[1]+' ');
WriteCaps(1,24,LowC,NormC,' '•Commands.Line[2]+' ');
CmdList:=Niin;
CurrConinand:=0;

end
else begin

WriteAt(2,MENULINE,Commands.Linell]);
Uri teAt(2,SuccCHENULINE),Commands.Line[2]);

end;
end;

function DBGetUorkingBuffers(var B1,B2,B3:DBBufPtr):boolean
{ get buffers to store database records }
begin

DBGetUorkingBuffers:=False;
if HaxAvail<{3*SizeOf(DBBufArray))+HinMem then Exit;
GetHem(B1,Si zeOf(DBBufArray));
GetHem(B2,SizeOf(OBBufArray));
GetHe<n(B3, Si zeOf(DBBuf Array));
DBGetUork i ngBuffers:=T rue;

end;

function DBHakeKey(var FData; DFT:DBField):string;
{ make a key entry from some type of data }
var

T : string absolute FData;
TStr: string;
Ext : string;
Ps : byte;

begin
case DFT.FType of

'A','B','C','E','H','W','Y': begin
TStr:=HakeStr(FData,DFT.Len.DFT.Oecs,DFT.FType);
TStr:=UpLowStr(TStr,'U');
Ps:=Pos('-',TStr);
if ((DFT.FType in ['I'.'L'.'R']) and

(Ps>0)) then begin
Delete(TStr,Ps,1);
TStr:=«1+TStr;

end;
end;

'I'.'L'.'R' ; begin
TStr:=HakeStr(FData,DFT.Len.DFT.Decs,DFT.FType);
Ps:=Pos('-',TStr);
if Ps>0 then begin

Delete(TStr,Ps,1);
TStr:=#31+
PadLeft(StripLeft(TStr,' '),':',Pred(DFT.Len))

end;
end;

else TStr:=CharStr(' '.DFT.Len);
end;
DBMakeKey:=TStr;

end;

function DBMakeName(FName:string; FType,OptNum:byte):string;
{ make a filename: 0-Def, 1-Class >
begin

case FType of
0: DBHakeName:=FName+'.DBD';
1 : OBMakeName:=FName+'.C'^BytetoHex(OptNum);
else DBMakeName:=FName;

end;
end;

www.manaraa.com

procedure OBGetBuffer(var FData; ObjBufferiDBBufPtr;
DFT:DBField);

{ get contents of buffer at defined field }
begin

MoveCObjBuffer*[DFT.AOfs],FData,DFT.ALen);
end;

procedure DBPutBuffer<var FData; ObjBufferiDBBufPtr;
DFTrDBField);

{ put contents into buffer >
begin

Hove(FData,ObjBuffer*[DFT.AOfs].DFT.ALen);
end;

procedure DBPutFieldDef(var DFT:DBField;
T i tle:DBT itleStr;FType;char;
Len,Decs,X,Y,Page,ALen;byte; AOfs:integer; CCase:char;
Hand,Calc:boolean; KeyTyp:char; OkSet;HenuSet;
Form:DBFormStr; UTitleiboolean);

{ put a definition into a DBField >
begin

DFT.Title:=Title; OFT.FType:=FType; *
OFT.Decs:=Decs;
DFT.Y:=Y;
DFT.ALen:=Alen;
DFT.CCase:=CCase;
DFT.Calc:=Calc;
DFT.OkSet:=OkSet;
DFT.WTitle:=UTitle;

OFT.Len:=Len;
DFT.X:=X;
DFT.Page:=Page;
DFT.AOfs:=AOfs;
DFT.Hand:=Mand;
DFT.KType:=KeyTyp;
DFT.Form:=Form;

end;

function DicMandatoryEntryCvar FData; DBT:DBFjeld):boolean
{ check to see if this field has been entered >
var

string absolute FData; A
B
C
I
R
U
Y

begin
if not DBT.Hand then DidMandatoryEntry:=True
else case DBT.FType of

'A' : DidHandatoryEntry:=(A<>CharStr(' '.DBT.Len));
'B','H': DidMandatoryEntry:=(B<>DBBBYTE);

byte absolute FData
char absolute FData
integer absolute FData
real absolute FData
word absolute FData
boolean absolute FData

•C : DidHandatoryEntry:=(C<>DBBCHAR);
'E' : DidHandatoryEntry:=(A<>DBBENTRY);
'P : DidHandatoryEntry:=<I<>DBBINT);
'R' : DidMandatoryEntry:=(R<>DBBREAL);
'W ; DidHandatoryEntry:=(U<>DBBWORD);

end;
end;

procedure DBGetField(var FData; var Nextibyte;
DBT:DBField;GType,SC:byte;
ExRet:HenuSet);

{ field input 0=Update only 1=Update 2=Enter 3=Prompted >
var

A : string absolute FData;
B : byte absolute FData;
C : char absolute FData;
I : integer absolute FData;
R : real absolute FData;
U : word absolute FData;
Y : boolean absolute FData;
TStr.TStrl; string;
Ch.Nd ; byte;
Ps,LPs,RPs,Mask: word;
FKeys : HenuSet;
Formatted,
ShowStar,
NotEntered: boolean;
OldR : real;
OldDate : stringdO];
OldTime : string[6];

function Hasked(Ps:word):boolean;
begin

Hasked:=(((1 shl Pred(Ps)) and Mask) = (1 shl Pred(Ps)))
end;

procedure GetPs(Direction:integer);
begin

case Direction of
-1 : begin { previous position >

Dec(Ps);
if Formatted then

while ((Hasked(Ps)) and (Ps>0)) do Dec(Ps);
if ((GType=3) and (Ps=0)) then begin

Inc(Ps);
while Hasked(Ps) do Inc(Ps);

www.manaraa.com

end;
end;

1 : begin { next position >
Inc(Ps);
if Formatted then

while ((Masked(Ps)} and
(Ps<=DBT.Len)) do Inc(Ps);

if ((GType=3) and (Ps>OBT.Len)) then begin
Dec(Ps);
if Formatted then while Hasked(Ps) do Dec(Ps)

end;
end;

end;
end;

begin
TStr:=HakeStr(A,DBT.Len.OBT.Decs,DBT.FType);
if (DBT.FType in ['B','I','R','U']) then

TStr:=PadRight(StripLeft(TStr,' '.DBT.Len);
WriteFast(DBT.X,DBT.Y,SC,TStr);
Next:=CR; { default >
Hask:=0;
Fonnatted:=(Hask<>0);
ShowStar;={(Lo(GetScrChar((DBT.X-1),DBT.Y)) in 10,32,255])

and (GType<>3));
if ShowStar then

WriteFast(Pred(DBT.X),DBT.Y,NorniC+Blink,'*');
Ps:=OBT.Len;
if Formatted then while Hasked(Ps) do Dec(Ps);
RPs:=Ps; Ps:=1;
if Formatted then while Hasked(Ps) do Inc(Ps);
LPs:=Ps;
FKeys:=[BACK,CR,ESC,LEFT,RIGHT,INSKEY,DELKEY,CTRLLEFT,

CTRLR IGHTJ+ExRet;
case Glype of

0 : FKeys:=FKeys+[F8,F10,UP,PGUP,DOWN,PGDN];
1 ; FKeys:=FICeys+[F5,F6,F8,F10,UP,PGUP,DOWN,PGDN];
2 ; FKeys:=FKeys+[F6,F8,F10,UP,PGUP,DOUH,PGDN];
4 : FKeys:=FKeys+[UP,DOWN];

end;
repeat
if GType<3 then case InsHode of

0 : UriteFast(70,HENULlNE.InvC,'Insert Off);
1 : WriteFast(70,HENULINE,InvC,'Insert On ');

end;

GotoXY{DBT.X+Pred(Ps),DBT.Y);
Ch:=KeyBoard(DBT.OkSet+FKeys,1);
if Ch in DBT.OkSet then begin
if ((InsHode=0) or (Formatted) or

(DBT.FType in t'B','H',«I','R«,'W'])) then
Delete(TStr,Ps,1)

else Delete(TStr,Length(TStr),1);
case DBT.CCase of

'L': if Ch in [65..90] then Inc(Ch,32);
'U': if Ch in [97..122] then Dec(Ch,32);

end;
Insert(Chr(Ch),TStr,Ps);
WriteFast(DBT.X,DBT.Y,SC,TStr);
GetPsd);

end
else case Ch of

BACK : if ((not Formatted) and (Ps>LPs)) then begin
Dec(Ps);
Delete(TStr,Ps,1);
TStr:=TStr+' ';
UriteFast(OBT.X,DBT.Y,SC,TStr);

end;
ESC,F3,F4,F5,F6,F7,F9,F10,UP,DOWN,PGUP,PGON ; Next:=C
F8 : begin { blank field }

case DBT.FType of
'A','N': TStr;=CharStr(' '.DBT.Len);
'B','P,'W':

TStr:=PadRight('0',' »,DBT.Len);
'C : TStr:=0BBCHAR;
'E' ; TStr:=DBBENTRY;
'H' : TStr:='00';
'R' : TStr:=PadRight('0.0',' ',DBT.Len)

end;
WriteFast(DBT.X,DBT.Y,SC,TStr);
Ps:=LPs;

end;
LEFT ; begin { left arrow >

GetPs(-l);
if Ps<LPs then Next:=LEFT;

end;
RIGHT: GetPs(l); { right arrow >
DELKEYiif not Formatted then begin { Del }

Delete(TStr,Ps,1);
TStr:=TStr+' ';
WriteFast(DBT,X,DBT.Y,SC,TStr);

end;

www.manaraa.com

CTRLLEFT : Ps:=LPs; { start of line }
CTRLRIGHT : if not Formatted then begin { end of line >

Ps:=OBT.Len;
while ((TStrIPs]=' ') and (Ps>1)) do

Dec(Ps);
if ((TStrIPs]<>' ') and (Ps<DBT.Len))

then Inc(Ps);
end
else Ps:=RPs;

end;
until ({Ch in [CR,ESC,F1,F2,F3,F4,F5,F6,F7,F9,F10,

UP,DOWN,PGUP,PGDN]) or
(Ps<LPs) or (Ps>RPs));

if Next<>ESC then case OBT.FType of
'A': A:=MakeStr(TStr,OBT.Len,DBT.Oecs,DBT.FType);
'B': begin

OldR:=Value(TStr);
if ((OldR<OBBMin) or (OldR>DBBHax)) then begin

Hsg('Value out of range (0..255)');
Next:=NOKEY;

end
else B:=Lo(Round(OldR));

end;
'C: C:=TStr[11;
'E': A:=PadLeft(StripLeft(TStr,' '),'0',DBT.Len);
'H': B:=HextoByte(TStr};
'I'; begin

OldR:=Value(TStr);
if ((OldR<OBIHin) or (OldR>DBIMax)) then begin

Msg('Value out of range (-32768..32767)');
Next:=NOKEY;

end
else I:=Round(OldR);

end;
'R': begin

OldR:=R;
Ps:=0;
Nd:=0;
while ((Ps<Length(TStr)) and (Nd<2)) do begin

Inc(Ps);
if TStrIPs]='.' then Inc(Nd);
if Nd>l then

Delete(TStr,Ps,Length(TStr)-Pred(Ps));
end;
R := Value(TStr);
RoundIt(R,DBT.Decs);

TStr1:=MakeStr(R,DBT.Len,DBT.Decs,OBT.FType);
if Length(TStr1)>DBT.Len then begin

Hsg('Value entered is out of acceptable range')
Next;=NOKEY;
R:=OldR;

end;
end;

'W: begin
OldR:=Value(TStr);
if ((OldR<DBUHin) or (OldR>OBUMax)) then begin

Msg('Value out of range (0..65535)');
Next:=NOKEY;

end
else U:=Round(OldR);

end;
'Y't Y:=(TStr='Y');

end;
if (not (Next in [ESC.NOKEY])) then

NotEntered:=(not DicMandatoryEntry(A,DBT))
else NotEntered:=False;
if NotEntered then begin

Hsg('Entry must be made here');
Next:=NOKEY;

end;
if ShowStar then UriteFast(Pred(DBT.X),DBT.Y,LowC,' ');
WriteFast(DBT.X,DBT.Y,SC,

HakeStr(FData,DBT.Len,DBT.Decs.DBT .FType));
end;

function DBGetPrompted(var FData; Promptzstring; FTyperchar;
X,Y,Len,Decs,Sc:byte; CCase:char;
OkSet:HenuSet):boolean;

{ get prompted input from user >
var

Olds : array [0..2] of LineArray;
Oldl : byte;
DFT : DBField;
SX ; byte;
Next : byte;
I ; byte;

begin
SX:=X*Length(Prompt);
DBPutFieldOef(DFT,' ',FType,Len,Decs,SX,Y,1,D,0,CCase,

DBNMAND.DBNCALC,DBNKEY,OkSe t,DBBFORH,DBHTITLE);

www.manaraa.com

if ((Y in [1,25]) or (X=1)) then begin
MoveF romScreen(Mem[ScreenAdr:Pred(Y)*160],0lds[0] ,80);
MakeBox(X,Y,X+Length(Prompt)+Len,Y,NormC,0,0,Prompt);

end
else begin

for I:=0 to 2 do
HoveFroniScreen(Hefli[ScreenAdr:(Y-2+I)*160] ,OldS[I] ,80);

MakeBox(X-2,Pred(Y),X+Length(Prompt)+Len+1,Succ(Y),
Norme, 3,0,Prompt);

end;
OldI:=InsHode;
if InsMode=1 then Meffl[$0000:$0417]:=Heffl[$0000:$0417]-$80;
DBGetField(FData,Next,DFT,3,SC,EHPTYSET);
if InsModeoOldl then begin
if InsMode=0 then Mem[$0000:$0417]:=Mem[$0000:$0417]+$80
else Meffl[$0000:$0417]:=Hem[$0000:$0417l-$80;

end;
if ((Y in [1,25]) or (X=1)) then

HoveToScreen(OldS[0] ,Meni[ScreenAdr:Pred{Y)*160] ,80)
else for I:=0 to 2 do

MoveToScreen(0ldS[I],Mem[ScreenAdr:(Y-2+I)*160],80);
DBGetPrompted:=(Next<>ESC);

end;

procedure OBGetNextField(var FldNim:byte;Next:byte;
ObjFiDBFieldArray);

{ get the next field for data entry based on next pointer >
var

Done: boolean;
Direction : byte;

begin
if Next=ESC then Exit;
Done:=False;
case Next of

CR,DOWM: repeat
if ObjF[FldNun]*.Page=0 then FldNum:=1
else Inc(FldNum);
Done:=((not ObjF[FldNun]*.Calc) and

(ObjF[FldNum]*.Page=1»;
until Done;

LEFT,UP: repeat
if FldNuipl then

while ObjF[Succ(FldHum)] ".PageoO do
Inc(FldNum)

else Dec(FldNum);

Done:=((not ObjFlFldNun]*.Calc) and
(ObjFlFldNutn] •.Page=1));

until Done;
PGDN,PGUP: ;

end;
end;

function DBLoadDef(FNaine:string;
ObjBuffer,ObjTBuffer,ObjBBuffer:DBBufPtr;
ObjF:DBFieldArray; ObjScreen:UindouPtr):boolean

{ load database definition >
var
I : ̂ e;
DBN : integer;
SStr: string[DBMaxFldLen];
DDFR: DBFileRec;
DDFV: file of DBFileRec;
NFlds : byte;

begin
DBLoadDef:=False;
if not FileExist(FName) then begin

Hsg('Database definition file '+FName+' not found ');
Exit;

end;
NFlds:=0;
FiUChar(SStr,Succ(DBHaxFldLen),#32);
Obj Screen*.ULX:=1;
ObjScreen*.ULY:=Pred(OBHINY);
ObjScreen*.LRX:=80;
ObjScreen'.LRY:=Succ(DBHAXY);
Ass i gn(DDFV,FName);
Reset(DDFV);
if ErrorCheck(True) then Exit;
FillChar(ObjBuffer*,Succ(DBHAXRECLEN),0);
FillChar(ObjTBuffer",Succ(DBHAXRECLEN>,0);
while not EOF(DDFV) do begin

Read(DDFV,DDFR);
if ErrorCheck(True) then begin

Close(DDFV);
Exit;

end;
case DDFR.RType of

0: begin { field definition)
Inc(NFlds);

www.manaraa.com

Hove(DDFR.FieldDef.Title,ObjFINFlds]*,
SizeOf(DBFie Id));

ObjF[NFlds]*.Title:=
PadRight{ObjF[HFlds]'.Title,' '.DBTITLELEM);

case ObjFWFlds]*.FType of
•A': begin

SStrtO]:=Chr(ObjF[NFlds] .Len);
OBPutBuffer(SStr,ObjBuffer,ObjFCNFlds]");

end;
'E'; OBPutBuffer(DBBENTRY,ObjBuffer,

ObjFWFlds]*);
end;

end;
1: begin < screen line >

for I:=0 to 79 do case Hi(DDFR.ScrLine.Cont[I]) of
1 : DDFR.ScrLine.Contll]:=

Lo(DDFR.ScrLine.Cont[I])+(LowC shl 8);
2 : DDFR.ScrLine.ConttI];=

Lo(DDFR.ScrLine.Cont[I])+(NormC shl 8);
3 : DDFR.ScrLine.ContCI]:=

Lo(DDFR.ScrLine.Cont[I])+(InvC shl 8);
end;
Hove(DDFR.ScrLine.Cont,

ObjScreen'.AddlDDFR.ScrLine .Line],160);
end;

end;
end;
Close(DDFV);
if ErrorCheck(True) then Exit;
for I:=Succ(NFlds) to DBHAXFIELDS do ObjF[Il*:=ObjFtO]";
Hove(ObjBuffer',ObjBBuffer',Succ(DBHAXRECLEN));
DBLoadDef:=TRUE;

end;

procedure ObjectInit(ObjNum:byte; var ObjScreen:UindowPtr;
var ObjBuffer,ObjTBuffer,ObjBBuffer:DBBufPtr;

var ObjFzDBFieldArray);
var
I : integer;
NFlds: byte;
MemOk: boolean;

begin
MemOk:=True;
I :=0;
if MaxAvail>SizeOf(WindowArray)+HinHem then

GetKemCObj Screen,S i zeOf(Ui ndowArray))
else MemOk:=False;
if HemOk then MemOk:=

DBGetUorkingBuffers(ObjBuffer,ObJTBuffer,ObjBBuffer);
if HenOk then begin

I;=0;
while ((I<=DBHAXFIELOS) and (MemOk)) do begin
if MaxAvail>SizeOf(DBField)+MinMem then

GetMem(ObjF[I],SizeOf(DBField))
else MemOk:=False;
Inc(I);

end;
end;
if not HemOk then begin

MsgCInsufficient memory to run program');
Halt;

end;
with ObJFtO]* do begin

Title = CharStrC ',10)
FType = DBBCHAR;
Len = DBBBYTE;
Decs = DBBBYTE;
X = DBBBYTE;
Y = DBBBYTE;
Page = DBBBYTE;
ALen = DBBBYTE;
AOfs = DBBINT;
CCase = DBUPLOU;
Hand = DBNHAND;
Calc = DBNCALC;
KType = DBNKEY;
OkSet

= • ;

Form = DBBFORH;
end;
if not DBLoadDef(DBMakeName(CLSNAMES[ObjNum],0,0),

ObjBuffer.ObjTBuff er,ObJBBuffer,ObjF,ObjScreen) then
Halt;

end;

function NextCompTime(Inst: InstType); real;
{ return the next time for a completion message > SiraClock >
var

TPtr : HsgPacketPtr;
begin

NextCompT ime:=S i mCIock+ROUNDFACT;

www.manaraa.com

TPtr:=FirstMsg;
if TPtr=nil then Exit;
while TPtronil do begin

if ((TPtr'.Clock>=SiinClock) and
(TPtr*.Hessage=SO_COHPLETE) and
(TPtr'.FromInst=Inst)) then begin

NextCoapTime:=TPtr'.Clock;
Exit;

end;
TPtr:=TPtr .Next;

end;
end;

procedure SencMsg(Fro(nCls:byte;FroaiInst:InstType; ToCls:byte;
ToInst;InstType; Hessage:HsgType;
Number,Clock:real);

{ send a Message >
var

HsgPacket : HsgPacketPtr;
TPtr : HsgPacketPtr;
LPtr : HsgPacketPtr;
Done : boolean;
HsgNum : byte;

begin
if MaxAvail<SizeOf(MsgPacketType)*MinMem then begin

HsgCInsufficient memory for message queue');
Halt;

end;
GetHem(HsgPacket,S i zeOf(HsgPacketType));
HsgPacket .FromCls:=FromCls;
HsgPacket *.From!nst;=F rominst;
HsgPacket'.ToC1s:=ToCIs;
HsgPacket*.Toinst:=ToInst;
HsgPacket *.Hessage:=Hessage;
HsgPacket".Number:=Number;
HsgPacket*.Clock:=Clock;
if SStep then begin C display message)

HsgNum:=Ord(HsgPacket".Hessage);
UriteHsgCNormC,
•Send: '+ClsNames[HsgPacket .FromCls]*

'•HsgPacket'.Fro(nInst+
' to '•ClsHames[HsgPacket".ToClsl+','+HsgPacket*.ToInst+
' "'+SoopMsgs[HsgNum]" '+
MakeStr(HsgPacket.Number,0,2,'R')+','+
HakeStr(HsgPac kef .Clock,0,2,'R'));

if GetAKeyoQ then ;
end;
C determine where message fits in message queue }
{ the new message should be after equal clock time >
Inc(HsgCount);
WriteAt(60,1,CHead+HakeStr(HsgCount,5,0,'W')) ;
HsgPacket'.Hext:=FirstHsg; (start as new first message }
if FirstMsg=nil then begin i this is the only message }

F i rstHsg:=MsgPacket;
Exit;

end;
if HsgPacket .Clock<FirstMsg'.Clock then begin { first >

HsgPacket".Next:=F i rstHsg;
F i rstHsg:=HsgPacket;
Exit;

end;
Done:=False;
TPtr:=FirstHsg; C point to first message >
LPtr:=TPtr;
while (not Done) do begin (find appropriate position }

HsgPacket".Next:=TPtr*.Next;
TPtr".Next:=HsgPacket;
if TPtroFirstHsg then LPtr .Next:=TPtr;
Done:=(HsgPacket'.Next=nil);
if not Done then begin
LPtr:=TPtr;
TPtr:=HsgPacket".Next;
Done:=(HsgPacket".Clock<TPtr".Clock);

end;
end;

end;

end.

www.manaraa.com

unit SOOPENT;
{ Entity object unit >

{$1 COHPDIRS.PAS)

interface

uses S00PGEN,S00PGEN1;

procedure EntClass(HsgPacket:HsgPacketType);
{ interface to the outside world >

implementation

const
ObjNim = ENTITY;

type
ObjRecPtr
ObjRec

'ObjRec;
record { object record >

Status
Instance
TypeCode
CurrLoc
CreateTime
StartTime
TimelnSys
UillFail
Next
Prev

end;

longint;
InstType;
real;
InstType;
real;
real;
real;
boolean;
ObjRecPtr;
ObjRecPtr;

F i rstObj,CurrObj,LastObj,TPtr
ObjScreen
ObjF
ObjBuffer
ObjBBuffer
ObjTBuffer
ObjSize
MOata
LastOisp

: UindowPtr; {
: DBFieldArray; {
: DBBufPtr; {
: DBBufPtr; t
: DBBufPtr; {
: word; {
: HsgPacketType; {
: pointer; (

I ObjRecPtr;
object screen)
field defs)
buffer for object >
blank buffer for object >
temp buffer for object)
size of this object >
working message >
last displayed object }

procedure ShowObject;
{ show current object >
var

FData : DBFOataArray;
FldNum: byte;

begin
if CurrClsoObjNum then begin

if (not SStep) then Exit;
CurrCls:=ObjNutn;

end;
if ((not SStep) and (CurrObjoLastDisp) and (not Paused))

then Exit;
RestoreWindow(ObjScreen');
FldNum:=1;
while ObjF[FlcMum]*.Page=1 do begin

DBGetBuf f er(FData,ObjBuffer,Obj F [F IdNun] *);
with (AjFCFldNiW do

UriteFast(X,Y,InvC,HakeStr(FData,Len,Decs,FType));
Inc(FldNum);

end;
LastDi sp:=CurrObj;

end;

procedure PutObjInBuffer;
{ put the Current object in the display buffer >
begin

if CurrObjonil then Hove(CurrObj*,ObjBuffer*,ObiSize)
else Hove(ObjBBuffer",ObjBuffer*,ObjSize);

end;

procedure ClearCurrObject;
{ clear data from object >
var

FData : DBFDataArray;
FldNum: byte;

begin
FldNum:=1;
while Obj F[FIdNum]'.Page=1 do begin

if StripLeft(StripRight(ObjF[FldNum]-.Form,' '),'
')='BLANK' then begin
DBGetBuffer(FData,ObjBBuffer,ObjF [FldNun] ");
OBPutBuffer(FData,ObjBuffer,ObjF[FldNum]*);

end;
Inc(FldNum);

end;
end;

www.manaraa.com

function DeleteCurrCbject:boolean;
begin

DeleteCurrObject:=False;
if CurrObj=nil then Exit;
TPtr:=CurrObj;
if FirstObj=TPtP then FirstObj:=FirstObj*.Next;
if LastObj=TPtr then LastObj:=LastObj*.Prev;
if CurrObj'.Prevonil then CurrObj:=CurrObj*.Prev
else if CurrObj'.Nextonil then CurrObj;=CurrObj".Kext
else CurrObj;=nil;
if TPtr'.Prevonil then TPtr".Prev".Next:=TPtr".Next;
if TPtr".Next<>nil then TPtr".Next".Prev:=TPtr*.Prev;
Oispose(TPtr);
PutObjlnBuffer;
DeleteCurrObj ect:=True;

end;

function GetNewObject:boolean;
{ allocate a new object and add to end of linked list >
var

TStr : InstType;
TReal: real;
Code : integer;

begin
GetNewObject:=False;
if HaxAvail<SizeOf(ObjRec)+HinHem then Exit;
GetHem(TPtr,SizeOf(ObjRec));
TPtr".Prev:=LastObj;
TPtr .Next:=nil;
if TPtr'.Prevonil then TPtr .Prev .Next:=TPtr;
CurrObj:=TPtr;
LastObj:=TPtr;
if FirstObj=nil then FirstObj:=TPtr;
Hove(Obj BBuffer",CurrObj',Obj Size);
if CurrObj .Prev=nil then CurrObj".Instance:=' 1'
else begin

TReal:=Value(CurrObj".Prev".Instance)+1.0;
CurrObj".Instance:=HakeStr(TRea1,5,0,'R');

end;
GetNeuObj ect:=T rue;

end;

function GetNextObject:boolean;
{ get the next object }
begin

GetNextObj ect:=FaIse;
if CurrObj=nil then Exit;
if CurrObj'.Next=niI then Exit;
CurrObj :=CurrObj .Next;
PutObjlnBuffer;
GetNextObj ect:=T rue;

end;

function GetPrevObject:boolean;
{ get the previous object >
begin

GetPrevObject:=False;
if CurrObj=nil then Exit;
if CurrObj".Prev=niI then Exit;
CurrObj:=CurrObj *.Prev;
PutObjlnBuffer;
GetPrevObj ect:=T rue;

end;

I procedure ClearAllObjects; ^
{ clear all objects (note: this is special for entities) >
begin

while OeleteCurrObject do;
end;

procedure LoadObjects;
{ load simulation objects from disk >
var

TObj : ObjRec;
ObF : file of ObjRec;

begin
{ delete current objects from memory }
while OeleteCurrObject do ;
(read objects from disk file if the file exists >
if not FileExist(DBHakeName(SinMame,1,0bjNum)) then Exit;
Assi gnCObF,DBHakeHame(S i mName,1,ObjNun));
Reset(ObF);
while (not EOF(ObF)) do begin

Read(ObF,TObj);
if not GetNewObject then begin

www.manaraa.com

Close(ObF);
HsgCInsufificient memory to load simulation');
Halt;

end;
Hove(TObj,CurrObj",ObjSize);

end;
Close(ObF);
CurrObj:=FirstObj;
PutObjInBuffer;
ShouObject;

end;

procedure SaveObjects;
{ save simulation objects to disk }
var

ObF : file of ObjRec;
begin

{ save objects to disk file >
TPtr:=FirstObj;
Assign(0bF,DBMakeName(SimName,1,0bjNum));
Rewrite(ObF);

. while TPtronil do begin
Urite{ObF,TPtr*);
TPtr:=TPtr".Next;

end;
Close(ObF);

end;

function PointTo(Inst;InstType):ObjRecPtr;
{ point to the indicated instance >
var

TPtr ; ObjRecPtr;
begin

PointTo:=nil;
if FirstObj=nil then Exit;
TPtr;=FirstObj;
while TPtronil do begin

if TPtr*.Instance=Inst then begin
PointTo:=TPtr;
Exit;

end;
TPtr:=TPtr*.Next;

end;
end;

procedure GenerateArrival;
{ generate an arrival of an entity }
begin

{ create a new entity >
if not GetNewObject then Exit;
{ mark Instance id, arrival time, type code, status >
CurrObj*.TypeCode:=MOata.Number;
CurrObj".CreateTime;=HOata.Clock;
PutObjInBuffer;
ShowObject;
{ request routing for self: "Where do I go?" >
SendMsg(ENTITY,TPtr.Instance,ROUTING,TPtr".CurrLoc,

GET_NEXT_RTE,TPTr*.TypeCode,SimClock);
{ generate next arrival of self >
SendHsgCENTITY,NINST,ROUTING,NINST,GEN_ARR_TIHE,

TPtr .TypeC ode,SimClock);
end;

procedure RequestServQueGranted;
C request for service/queue was granted, move entity to new
location >
begin

TPtr:=PointTo(HData.ToInst);
if TPtr=nil then Exit;

{ send message to prior location that entity is leaving }
SendMsg(ENTITY,TPtr'.Instance,SERVQUE,TPtr'.CurrLoc,

ENTITY_LEAVE_SQ,SimClock-TPtr'.StartTime,SimClock);

{ set service failure flag off }
TPtr'.UillFail:=False;

{ set current location }
TPtr *.CurrLoc;=HData.F rominst;

{ set current location start time }
TPtr*.StartTime:=SiinClock;
CurrObj;=TPtr;
PutObjInBuffer;
ShowObject;
{ send return message to indicate that entity is moved and

completion should be scheduled }
SendMsg(ENTITY,TPtr'.Instance,ROUTING,TPtr'.CurrLoc,

SCH_SO_COHP,TPtr'.TypeCode.SimClock);
end;

www.manaraa.com

procedure RequestServQueDenied;
{ request for service/queue was denied, attempt to

reschedule/reroute >
begin

TPtr:=PointTo(MOata.ToInst);
if TPtr=nil then Exit;
CurrObj:=TPtr;
PutObjlnBuffer;
ShoHObject;
if TPtr'.WillFail then begin { entity destined to fail >

SendMsg(ENTITY,TPtr'.Instance,ROUTING,TPtr'.CurrLoc,
GET_FAIL_RTRY,TPTr*.TypeCode,SimClock);

end
else begin { request alternate routing for entity >

SendHsg(EHTITY,TPtr*.Instance,ROUTING,TPtr*.CurrLoc,
GET_ALT_RTE,TPTr*.TypeCode,SimCIock);

end;
end;

procedure ServQueConplete;
{ service/queue completed, need next route >
begin

TPtr:=PointTo(HData.ToInst);
if TPtr=nil then Exit;
CurrObj;=TPtr;
PutObjlnBuffer;
ShowObject;
if TPtr'.WillFail then begin i entity destined to fail >

SendHsg(ENTITY,TPtrMnstance,ROUTING,TPtr".CurrLoc,
GET_FAIL_RTE,TPTr*.TypeCode,SiinClock);

end
else begin C send return message requesting next route }

SendMsg(ENTITY,TPtr'.Instance,ROUTING,TPtr'.CurrLoc,
GET_NEXT_RTE,TPtr*.TypeCode.SiinClock);

end;
end;

procedure SetFail(Fail:boolean);
{ set entity fail service flag)
begin

TPtr:=PointTo(HData.ToInst);
if TPtr=nil then Exit;
TPtr'.WillFail:=FaiI ;
CurrObj:=TPtr; PutObjlnBuffer; ShowObject;

end;

procedure LeaveSystem;
{ entity leaves simulation >
begin

TPtr:=PointTo(HData.ToInst);
if TPtr=nil then Exit;
{ send message to prior location that entity is leaving >
SendHsg(ENTITY,TPtr'.Instance,SERVOUE.TPtr'.CurrLoc,

ENTITY_LEAVE_SQ,SimClock-TPtr".StartTiroe,SimClock);
TPtr'.CurrLoc:=NINST;
TPtr'.TimeInSys:=SimClock-TPtr'.CreateTime;
CurrObj:=TPtr; PutObjlnBuffer; ShowObject;
{ send message indicating entity throughput >
SendMsg(ENTITY,TPtr-.Instance,SIHULATE,NINST,ENTITY_DEP,

TPtr'.TiraeInSys,SimClock);
{ delete the entity, no longer needed >
if OeleteCurrObject then;

end;

procedure EntClass(HsgPacket:MsgPacketType);
{ interface to the outside world >
begin

HData:=HsgPacket;
case HOata.Message of ^

CLEAR_OBJ : ClearAllObjects; e\
DELETEjOBJ : if OeleteCurrObject then ShowObject; ^
LOAO_OBJ : LoadObjects;
SAVE OBJ : SaveObjects;
SHOW'CURR OBJ : ShowObject;
SHOU'_NEXT~OBJ : if GetNextObject then ShowObject;
SHOW~PREV~OBJ : if GetPrevObject then ShowObject;
GEN_ÂRRIVÂL : GenerateArrival;
REQ~SQ_GRANTED: RequestServQueGranted;
REQ SO DENIED : RequestServQueDenied;
ENTTTY~SQ COMP: ServQueComplete;
ENTITY_SET FAILtSetFai UTrue);
ENTITY_NO_FAIL: SetFail(False);
LEAVE_SYS : LeaveSystem;

end;
end;

begin
0bjSize:=Size0f(0bjRec)-8; { subtract 8 for pointers >
FirstObj:=nil; CurrObj:=nil; LastObj:=nil; LastDisp:=nil;
ObjectInit(ObjNum,ObjScreen,ObjBuffer,ObjTBuf fer,ObjBBuffer

.ObjF);
end.

www.manaraa.com

unit SOOPRTE;
{ Routing object unit >

{$I COHPDIRS.PAS>

interface

uses S00PGEN,S00PGEN1;

procedure RteClass(MsgPacket:MsgPacketType);
{ interface to the outside world >

implementation

const
ObjNun = ROUTING;

const
Dists:array [1..3] of InstType= ('UHFRH'.'EXPON'.'NORHL')

type
ObjRecPtr = "ObjRec;
ObjRec = record { object record >

Status
Instance
Desc
EntType
CurrLoc
Dist
Mean
Std
FaiIPerc
FailTo
NextLoc
BalkLoc
Next
Prev

end;

longint;
InstType;
string [25];
real;
InstType;
InstType;
real;
real;
real;
InstType;
InstType;
InstType;
ObjRecPtr;
ObjRecPtr;

F1rstObj.CurrObj,LastObj,TPtr
ObjScreen
ObjF
ObjBuffer
ObjBBuffer
ObjTBuffer
ObjSize
HData
LastDisp

: UindowPtr; {
: DBFieldArray; {
: DBBufPtr; {
: DBBufPtr; {
: DBBufPtr; {
: word; {
: HsgPacketType; {
: pointer; {

I ObjRecPtr;
object screen >
field defs >
buffer for object }
blank buffer for object >
temp buffer for object >
size of this object >
working message }
last displayed object }

procedure ShowObject;
{ show current object >
var

FData : DBFOataArray;
FldNum: byte;

begin
if CurrClsoObjNum then begin

if (not SStep) then Exit;
CurrCls:=ObjNum;

end;
if ((not SStep) and (CurrObjoLastDisp) and (not Paused))

then Exit;
RestoreWindow(ObjScreen');
FldNum:=1;
while ObjF[FldNum]'.Page=1 do begin

DBGetBuffer(FData,ObjBuffer,ObjFtFldNum]');
with ObjFtFldNun]" do

WriteFast(X,Y,InvC,HakeStr(FData,Len,Oecs,FType));
Inc(FldNum);

end;
LastDisp:=CurrObj;

end;

procedure PutObjInBuffer;
{ put the Current object in the display buffer >
begin
if CurrObjonil then Nove(CurrObj*,ObjBuffer',ObjSize)
else Hove(ObjBBuffer",ObjBuffer",ObjSize);

end;

procedure ClearCurrObject;
{ clear data from object >
var

FData : DBFDataArray;
FldNum: byte;

begin
FldNum:=1;
while ObjFCFldNun]'.Page=1 do begin
if Stripleft(StripRight(ObjF[FldNun*]'.Form,' •),

' ')='BLANK' then begin
DBGetBuffer(FData,ObjBBuffer,ObjF[FldNum]*);
DBPutBuffer(FData,ObjBuffer,Obj F[FldNum]');

end;
Inc(FldNum);

end;
end;

www.manaraa.com

function DeleteCurrObject:boolean;
begin

DeleteCurrObject:=False;
if CurrObJ=nil then Exit;
TPtr:=CurrObj;
if FirstObj=TPtr then FirstObj:=FirstObj*.Next;
if LastObj=TPtr then LastObj:=LastObj*.Prev;
if CurrObj'.Prevonil then CurrObj:=CurrObj*.Prev
else if CurrObj'.Nextonil then CurrObj:=CurrObj*.Next
else CurrObj:=nil;
if TPtr'.Prevonil then TPtr*.Prev".Next:=TPtr".Mext;
if TPtr'.Nextonil then TPtr".Next'.Prev:=TPtr".Prev;
DisposedPtr);
PutObjInBuffer;
DeleteCurrObj ect:=T rue;

end;

function GetNeuObject:boolean;
{ allocate a new object and add to end of linked list }
begin

GetNewObject:=False;
if MaxAvail<SizeOf(ObjRec)+HinHein then Exit;
GetHein(TPtr,SizeOf(ObjRec));
TPtr'.Prev:=LastObJ;
TPtr'.Next;=nil;
if TPtr'.Prevonil then TPtr".Prev*.Next:=TPtr;
CurrObj:=TPtr;
LastObj:=TPtr;
if FirstObj=nil then FirstObJ:=TPtr;
Hove(Obj BBuffer*,CurrObj *,Obj Size);
GetNeuObj ect:=T rue;

end;

function GetNextObJect:boolean;
{ get the next object >
begin

GetNextObject:=False;
if CurrObj=nil then Exit;
if CurrObj'.Next=niI then Exit;
CurrObj:=CurrObj *.Next;
PutObjInBuffer;
GetNextObject:=T rue;

end;

function GetPrevObject:boolean;
{ get the previous object }
begin

GetPrevObject:=FaIse;
if CurrObj=nil then Exit;
if CurrObj'.Prev=niI then Exit;
CurrObj:=CurrObj .Prev;
PutObjInBuffer;
GetPrevObj ect:=T rue;

end;

procedure GetObject(RType:byte);
{ enter or update an object >
var

FData : DBFDataArray;
Fin : boolean;
FldNum : byte;
FFld : byte;
Next : byte;

begin
if ((RType=1) and (CurrObj=nil)) then Exit;
Next:=CR;
FldNura:=1;
Fin:=True;
while ObjFCFldNum]'.Calc do Inc(FldNum);
FFld:=FldNum;
ShowHenuCRType+125);
repeat

Fin:=False;
Hove(ObjBuffer*,ObjTBuffer",ObjSize);
if RType = 2 then begin

Move(ObjBBuffer',ObjBuffer*,ObjS{ze);
if not GetNewObject then Next:=ESC;

end;
FldNum:=FFld;
ShowObject;
if NextoESC then repeat

DBGetBuffer(FOata,ObjBuffer,ObjF[FldNiin] ');
DBGetF i eld(FData,Next,Obj F[FIdNum]*,RType,InvC,

EHPTYSET);
DBPutBuffer(FData,ObjBuffer,ObjF[FldNum] *);
DBGetNext F i eld{FIdMun,Next,Obj F >;

until Next in [ESC,F5,F6,F10];
Fin:=(Next in CESC.FIO]);

www.manaraa.com

case Next of
ESC: begin { abort >

Hove(ObjTBuffer",ObjBuffer',ObjSize);
if RType=2 then if DeleteCurrObject then ;

end;
F5 : begin { previous object >

Hove(Obj Buffer *,CurrObj *,ObjS i ze);
if not GetPrevObject then ;

end;
F6 : begin { next object >

Hove(Obj Buffer *,CurrObj",Obj Size);
if RType=1 then if not GetNextObject then ;

end;
F10: Hove(ObjBuffer*,CurrObj*,ObjSize);

end;
ShouObject;

until Fin;
ShowMenu(CmdList);
if HilightCommandCO) then ;

end;

procedure ClearAllObjects;
(clear data from all objects >
begin

TPtr:=FirstObj;
while TPtronil do begin

ClearCurrObject;
TPtr:=TPtr .Next;

end;
end;

procedure LoadObjects;
{ load simulation objects from disk }
var

TObj : ObjRec;
ObF : file of ObjRec;

begin
{ delete current objects from memory }
while DeleteCurrObject do ;
(read objects from disk file if the file exists >
if not FileExist(DBHakeName(SimName,1,0bjNum)) then Exit
Assign(0bF,DBMakeName(SimName,1,0bjNum));
Reset(ObF);

while (not EOF(ObF)) do begin
Read(ObF,TObj);
if not GetNewObject then begin

Close(ObF);
HsgCInsufficient memory to load simulation'); Halt;

end;
Move(TObj,CurrObj",ObjSize);

end;
Close(ObF);
CurrObj:=FirstObj; PutObjInBuffer; ShowObject;

end;

procedure SaveOfojects;
{ save simulation objects to disk >
var

ObF : file of ObjRec;
begin

{ save objects to disk file >
TPtr;=FirstObj;
Assign(0bF,DBHakeName($inMame,1,0bjNum));
Rewrite(ObF);
while TPtronil do begin

Write(ObF,TPtr);
TPtr:=TPtr .Next;

end;
Close(ObF);

end;

function PointTo(CurrLoc:InstType; EntType:real):ObjRecPtr;
{ point to the routing record with the indicated current

location and entity class }
var

TPtr : ObjRecPtr;
begin

PointTo:=nil;
if FirstObj=nil then Exit;
TPtr:=FirstObj;
while TPtronil do begin
if <(TPtr".CurrLoc=CurrLoc) and ((TPtr*.EntType=EntType)

or (EntType=0.0))) then begin
PointTo;=TPtr;
Exit;

end;
TPtr:=TPtr .Next;

end;
end;

www.manaraa.com

function GetDistNuii>er(Oist:InstType; Mean,StcDev:real):real
{ generate a number from the indicated distribution >
var

DNum : byte;
Found: boolean;

function SampleNorm:real;
{ get a sample from a standard normal distribution >
const

{ normal table sample (Schriber GPSS text p263} >
NormTablel : array [1..25] of real =

(0.0,0.00003,0.00135,0.00621,0.02275,0.06681,0.11507,
0.15866,0.21186,0.27425,0.34458,0,42074,0.5,0.57926,
0.65542,0.72575,0.78814,0. 84134,0.88493,0.93319,
0.97725,0.99379,0.99865,0.99997,1.0);

NormTable2 : array [1..25] of real =
(-5.0,-4.0,-3.0,-2.5,-2.0,-1.5,-1.2,-1.0,-0.8,-0.6,
-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,1.2,1.5,2.0,2.5,
3.0,4,0,5.0);

var
RNum : real;

begin
fcNun:=Randora; { get a random number >
DNum:=1;
while RNun>=NormTable1 [Succ(DNuni}] do begin

Inc(DNum);
if DNum=25 then begin

SampleNorm:=NormTable1[DNum];
Exit;

end;
end;
SampleNorm:=NormTable1 [ONun] ;

end;

begin
Get0istNumber;=0.0;
DNum:=0;
Found:=False;
{ find the correct distribution)
while ((DHum<MaxDist) and (not Found)) do begin

Inc(DNum);
Found:=(Dists[DNum]=Oist);

end;
if not Found then Exit;

case DNum of
1 : begin { uniform (std dev is used as range) >

GetDistNumber:= (Hean-StdDev)+(Random * StdDev*2);
end;

2 : begin { exponential (p163 of Schriber GPSS text) >
GetDistNumber:= Mean * (-1.0 * ln(1-Random))

end;
3 : begin { normal (see p262 of Schriber GPSS text) }

GetDistNumber:= (StdDev * SampleNorm) + Mean;
end;

end;
end;

procedure GenerateArrivalTime;
{ determine which arrivals to generate & when (entity types

if Number=0,0))
var

ATime ; real;
Found : boolean;

begin
{ find first route for the desired entity instance & type >
TPtr:=PointTo(NINST,MDat8.Number); ^
while TPtronil do begin ON

CurrObj:=TPtr; { display the object for reference >
PutObjInBuffer;
ShouObject;
{ generate arrival time (offset by simulation clock) >
ATime:=GetDistNumber(TPtr*.Dist,TPtr*.Mean,TPtr".Std);
{ send message indicating entity should be generated >
SendMsg(ROUTING,NINST,ENTITY,NINST,GEN_ARRIVAL,

TPtr'.EntType,MData.Clock+ATime);
{ generate additional arrivals if desired >
if MData.NimberoQ.G then Exit;
repeat

TPtr:=TPtr".Next;
if TPtronil then Found:=(TPtr*.CurrLoc=NINST);

until ((TPtr=nil) or (Found));
end;

end;

www.manaraa.com

procedure GetNextRoute(RouteCode:byte);
{ get next routing for entity and send appropriate messages }
{ RouteCode: 0 - Get primary next location }
{ 1 - Get alternate route after primary denial >
{ 2 - Get fail route after failure of service >
{ 3 - Retry getting fail route after denial }
begin
{ find the first route for desired entity instance & type >
TPtr:=PointTo(MData.ToInst,MOata.Number);
if TPtr=nil then Exit;
LurrObj:=TPtr; PutObjInBuffer; ShowObject;
{ if next location is blank, leave, else request entry >
if (((TPtr .NextLoc=NINST) and (RouteCode in [0,1])) or

((TPtr".FailTo=NINST) and (RouteCode in [2,3]))) then
SendMsg(ROUTlNG,NINST,ENTITY,MData.From!nst,UEAVE_SYS,

0.0,SimClock)
else case RouteCode of

0 : begin { no prior denials, try first location >
if TPtr*.BalkLoc=NINST then

SendHsg(ENTITY,MData.FromInst,SERVQUE,
TPtr*.NextLoc,RE0_SQ_ENTRY,0.0,SimClock)

else SendHsg(ENTITY,MData.Fromlnst,SERVQUE,
TPtr*.NextLoc,REQ_SQ_ENTRY,1.O.SimClock)

end;
1 : if TPtr".BalkLoc=NINST then begin

{ prior request failed, retry route with clock
incremented to next completion time }

SendHsg(ENTITY,HData.FromInst,SERVQUE,
TPtr".NextLoc,REQ_SQ_ENTRY,0.0,SimClock);

end
else begin { request denied, try alternate route }

SendHsg{ENTITY,MData.Fromlnst,SERVQUE,
TPtr".BalkLoc,REQ_SQ_ENTRY,0.0,SimClock);

end;
2 ; begin { service failed, request failure route >

SendHsg{ENTITY,MData.From!nst,SERVQUE,TPtr*.FailTo,
REQ_SQ_ENTRY,D.0,S imCIock);

end;
3 : begin (service failed, request failure route

repeated (reasoning like type 1) }
SendHsg{ENTITY,MData.Fromlnst,SERVQUE,TPtr*.FailTo,

REO_SQ_EHTRY,0.O.SimClock);
end;

end;
end;

procedure ScheduleSrvQueCompletion;
{ schedule service/queue completion >
var ATime : real;
begin

TPtr:=PointTo(MData.ToInst,MData.Number);
if TPtr=nil then Exit;
CurrObj;=TPtr; PutObjInBuffer;
ShowObject;
ATime;=GetDistHumber(TPtr*.Dist,TPtr*.Hean,TPtr*.Std)+

SimClock;
if GetDistNumberCUNFRM',50.0,50.0) < TPtr .FailPerc then

SendHsg(RaUTING,NINST,ENTITY,H)ata.Fromlnst,
ENTITY SET FAIL,0.0,ATime);

SendMsg(RoGTING,HData.FromInst,SERVQUE,TPtr*.CurrLoc,
SO_COHPLETE,0.0,ATime);

end;

procedure RteClass(HsgPacket:MsgPacketType);
{ interface to the outside world >
begin

MData:=HsgPacket;
case MData.Message of

CLEAR OBJ ClearAllObjects;
DELETE OBJ if DeleteCurrObject then ShowObject
ENTER OBJ GetObject(2);
LOAD OBJ LoadObjects;
SAVE"OBJ SaveObjects;
SHOW CURR OBJ ShowObject;
SHOW NEXT OBJ if GetNextObject then ShowObject;
SHOW PREV OBJ if GetPrevObject then ShowObject;
UPDATE OBJ GetObjectd);
GEN ARR TIME GenerateArrivalTime;
GET~NEXT RTE GetNextRoute(O);
GET ALT RTE GetNextRoute(l);
GET FAIL RTE GetNextRoute(2);
GET FAIL RTRY GetNextRoute(3);
SCH SQ CÔMP ScheduleSrvQueCompletion;

end;
end;

begin
ObjSize:=SizeOf(ObjRec)-8; { subtract 8 for pointers }
FirstObj:=nil; CurrObj:=nil; LastObj:=nil; LastDisp:=nil;
ObjectInit(ObjNun,ObjScreen,ObjBuffer,ObjTBuffer,

ObjBBuffer,ObjF);
end.

www.manaraa.com

unit SOOPSIH;
{ Simulation object unit >

{$1 COHPDIRS.PAS>

interface

uses SOOPGEN.SOOPGENI;

procedure SiinClass(HsgPacket:HsgPacketType);
{ interface to the outside world >

implementation

const
ObjNutn = SIMULATE;

type
ObjRecPtr = 'ObjRec;
ObjRec = record { object record >

Status : longint;
Instance : InstType;
Oesc : string[25];
HaxTime : real;
CurrTime : real;
CurrQty : real;
HinTInSys ; real;
HaxTInSys : real;
AvgTInSys : real;
Next : ObjRecPtr;
Prev ; ObjRecPtr;

end;

var
FirstObj,CurrObj,LastObj,TPtr : ObjRecPtr;
ObjScreen : UindowPtr; { object screen }
ObjF : DBFieldArray; t field defs)
ObjBuffer : DBBufPtr; { buffer for object)
ObjBBuffer : DBBufPtr; { blank buffer for object >
ObjTBuffer : DBBufPtr; { temp buffer for object >
ObjSize : word; { size of this object }
HOata : HsgPacketType; { working message >
LastDisp : pointer; { last displayed object }

procedure ShowObject;
{ show current object >
var

FData : OBFDataArray;
FldNun: byte;

begin
if CurrClsoObjNum then begin
if (not SStep) then Exit;
CurrCls:=ObjNum;

end;
if ((not SStep) and (CurrObjoLastDisp) and (not Paused))

then Exit;
RestoreUindow(ObjScreen'); FldNiin:=1;
while ObjF[FIdNum]'.Page=1 do begin

DBGetBuffer(FData.ObjBuffer,ObjF[FIcMum]');
with ObjFIFldNum]' do

UriteFast(X,Y,InvC,MakeStr(FData,Len,Oecs,FType));
Inc(FldNum);

end;
LastD i sp:=CurrObj;

end;

procedure PutObjlnBuffer;
{ put the Current object in the display buffer >
begin

if CurrObjonil then Hove(CurrObj*,ObjBuffer*,ObjSize)
else Hove(ObjBBuffer*,ObjBuffer',ObjSize);

end;

procedure ClearCurrObject;
{ clear data from object >
var

FData : OBFDataArray;
FldNum: byte;

begin
FldNum:=1;
while ObjFCFldHura]*.Page=1 do begin
if StripLeft(StripRight(ObjF[FldNum]*.Form,' '),
' ')='BLAMK' then begin
DBGetBuf fer(FData,ObjBBuffer,ObjF [FlcMum] *);
DBPutBuffer(FData,ObjBuffer,0bj F[FIdNum]*);

end;
Inc(FldNum);

end;
end;

www.manaraa.com

function DeleteCurrObject:boolean;
begin

DeleteCurrObject:=False;
if CurrObj=nil then Exit;
TPtr:=CurrObj;
if FirstObj=TPtr then FirstObj:=FirstObj".Next;
if LastObj=TPtr then LastObj:=LastObj*.Prev;
if CurrObj'.Prevonil then CurrObj:=CurrObj".Prev
else if CurrObj'.Nextonil then CurrObj:=CurrObi".Next
else CurrObj:=nil;
if TPtr'.Prevonil then TPtr".Prev*.Next:=TPtr*.Next;
if TPtr'.Nextonil then TPtr".Next".Prev:=TPtr".Prev;
Dispose(TPtr);
PutObjInBuffer;
DeleteCurrObject:=True;

end;

function GetNewObject:boolean;
{ allocate a new object and add to end of linked list >
begin

GetNeuObject:=False;
if HaxAvail<SizeOf(ObjRec)+HinHein then Exit;
GetHein(TPtr,SizeOf(ObjRec));
TPtr".Prev:=LastObj;
TPtr'.Hext:=nil;
if TPtr'.PrevoniI then TPtr .Prev .Next:=TPtr;
CurrObj:=TPtr;
LastObj;=TPtr;
if FirstObj=nil then FirstObj:=TPtr;
Move(ObjBBuffer',CurrObj*,ObjSize);
GetNeuObj ect:=T rue;

end;

function GetNextObject:boolean;
{ get the next object >
begin

CetNextObject:=False;
if CurrObj=nil then Exit;
if CurrObj*.Next=niI then Exit;
CurrObj:=CurrObj".Next;
PutObjInBuffer;
GetNextObj ect:=T rue;

end;

function GetPrevObject:boolean;
{ get the previous object >
begin

GetPrevObj ect:=FaIse;
if CurrObj=nil then Exit;
if CurrObj".Prev=niI then Exit;
CurrObj ;=CurrObj *.Prev;
PutObjInBuffer;
GetPrevObj ect:=True;

end;

procedure GetObject(RType:byte);
{ enter or update an object >
var

FOata : DBFOataArray;
Fin : boolean;
FldNum : byte;
FFld : byte;
Next : byte;

begin
if ((RType=1) and (CurrObj=nil)) then Exit;
Next:=CR;
FldNum:=1;
Fin:=True;
while ObjFCFldNuml'.Calc do Inc(FldNum);
FFld:=FldNum;
ShowMenu(RType+125);
repeat

Fin:=False;
Hove(ObjBuffer*,ObjTBuffer*,ObjSize);
if RType = 2 then begin

Hove(ObjBBuffer*,ObjBuffer*,ObjSize);
if not GetNeuObject then Next:=ESC;

end;
FldNum:=FFld;
ShowObject;
if NextoESC then repeat

DBGetBuffer(FOata,ObjBuffer,ObjF[FldNutR] ');
DBGetField(FData,Next,ObjF [FIdNutiû *,RType, InvC,

EHPTYSET);
DBPutBuffer(FData,ObjBuffer,ObjF[FldNunil ");
DBGetNextFi eld(FldNun,Next,ObjF);

until Next in [ESC,F5,F6,F10];
Fin:=(Next in [ESC,FIG]);

www.manaraa.com

case Next of
ESC: begin { abort >

Hove(ObjTBuffer*,ObjBuffer*,ObjSize);
if RType=2 then if DeleteCurrObject then ;

end;
F5 ; begin { previous object >

Hove(Obj Buffer*,CurrObj",Obj Size);
if not GetPrevObject then ;

end;
F6 : begin { next object >

Hove(Obj Buffer *,CurrObj",0bj Size);
if RType=1 then if not GetNextObject then ;

end;
F10: Move(ObjBuffer*,CurrObj",ObjSize);

end;
ShouObject;

until Fin;
ShouHenuCCmdLiSt) ;
if HilightComnandCO) then ;

end;

procedure ClearAllObjects;
C clear data from all objects >
begin

TPtr:=FirstObj;
while TPtronil do begin

ClearCurrObject;
TPtr;=TPtr'.Next;

end;
end;

procedure LoadObjects;
{ load simulation objects from disk }
var

TObj : ObjRec;
ObF : file of ObjRec;

begin
C delete current objects from memory }
while DeleteCurrObject do ;
{ read objects from disk file if the file exists >
if not FileExist(08MakeName(SimName,1,0bjNum)) then Exit
Assign(0bF,DBMakeName(SimName,1,0bjNum));
Reset(ObF);

while (not EOF(ObF)) do begin
Read(ObF,TObj);
if not GetNewObject then begin

Close(ObF);
HsgCInsufficient memory to load simulation');
Halt;

end;
HoveCTObj,CurrObj .ObjSize);

end;
Close(ObF);
CurrObj:=F i rstobj;
PutObjlnBuffer;
ShouObject;

end;

procedure SaveObjects;
{ save simulation objects to disk >
var

ObF : file of ObjRec;
begin

{ save objects to disk file >
TPtr:=Firstobj;
Assign(0bF,DBHakeName(SiirName,1,0bjNum));
Rewrite(ObF);
while TPtronil do begin

Write(0bF,TPtr*);
TPtr:=TPtr".Next;

end;
Close(ObF);

end;

procedure UpdateClock;
{ update the simulation object clock >
begin

CurrObj".CurrT ime:=KData.Number;
PutObjlnBuffer;
ShowObject;
if CurrObj".CurrTime>CurrObj".MaxTime then

SendHsg(SIHULATE,CurrObjMnstance.HAILHAN,NINST,
END_SIHULATION,0.0,PRIORITY);

end;

www.manaraa.com

procedure ReportSïmulation;
{ print all object detail >
var

FOata : DBFDataArray;
FldNura: byte;

begin
CurrObj:=F i rstObj;
if CurrObj=nil then Exit;
if not PrinterReady then Exit;
while CurrObjonil do begin

PutObjInBuffer;
FldNum:=1;
while ObjFIFldNtni]'.Page=1 do begin

DBGetBuffer(FData,ObjBuffer,ObjF[FldNum]*);
with ObjFlFldHun]' do
if not UritePrt(Title+
'; •+HakeStr{FData,Len,Decs,FType)+PCRLF+PCRLF)

then Exit;
Inc(FldNum);

end;
if not UritePrt(PFF) then Exit;
CurrObj:=CurrObj .Next;

eml;
end;

procedure EntityOeparted;
{ an entity has left the system >
begin

{ set throughput >
CurrObj *.CurrQty:=CurrObj".CurrOty+1.0;
{ set rain time in system }
if ((HData.Number>0.0) and

((HOata.Number<CurrObj".HinTInSys) or
(CurrObj*.HinTInSys=0.0))) then

CurrObj'.MinTInSys:=MData.Number;
{ set max time in system >
if MOata.Number>CurrObj*.HaxTInSys then

CurrObj *.HaxTInSys:=HData.Number;
{ set avg time in system >
CurrObj *.AvgTInSys:={(CurrObj'.AvgTInSys*

(CurrObj*.CurrOty- 1.0)) +
HData.Nuraber)/CurrObj *.CurrOty;

PutObjInBuffer;
ShowObject;

end;

procedure S imCIass(HsgPacket:HsgPacketType);
{ interface to the outside world >
begin

HOata:=MsgPacket;
case HOata.Message of

CLEAR OBJ
DELETE OBJ
ENTER OBJ
LOAD ÔBJ
SAVE^OBJ
SHOW CURR_OBJ
SHOW"NEXT OBJ
SHOW~PREV~OBJ
UPDATE OBJ
UPDATE~CLOCK
report'SIH
ENTITY_OEP

end;
end;

ClearAllObjects;
if DeleteCurrObject then ShowObject;
GetObject(2);
LoadObjects;
SaveObjects;
ShowObject;
if GetNextObject then ShowObject;
if GetPrevObject then ShowObject;
GetObject(l);
UpdateClock;
ReportSimulation;
EntityOeparted;

begin
0bjSize:=Si2e0f(0bjRec)-8; { subtract 8 for pointers >
FirstObj:=nil;
CurrObj:=niI;
LastObj:=nil;
LastDisp:=nil;
ObjectInit(ObjNum,ObjScreen,ObjBuffer,ObjTBuffer,

ObjBBuffer .ObjF);
end.

www.manaraa.com

unit SOOPSRV;
{ Service object unit >

{SI COHPDIRS.PAS>

interface

uses SOOPGEN.SOOPGENI;

procedure SrvClass{HsgPacket:HsgPacketType);
{ interface to the outside world >

implementation

const
ObjNum = SERVQUE;

type
ObjRecPtr = 'ObjRec;
ObjRec = record { service record >

Status longint;
Instance InstType;
Desc string[251;
Capacity real;
SrvStatus StatusType;
CurrQty real;
HaxQty real;
AvgQty real;
TotalQty real;
Utilized real;
HinTBA real;
HaxTBA real;
HeanTBA real;
MinTime real;
HaxTime real;
HeanTime real;
LastArrival real;
Next.Prev ObjRecPtr;

end;
var

FirstObj,CurrObj,LastObj,TPtr ; ObjRecPtr;
ObjScreen : WindowPtr; { object screen)
ObjF : DBFieldArray; { field defs }
ObjBuffer.ObjBBuffer.ObjTBuffer : DBBufPtr; { buffers >
ObjSize : word; { size of this object >
MData ; HsgPacketType; { working message }
LastDisp : pointer; { last displayed object >

procedure ShouObject;
{ show current object >
var

FOata : DBFDataArray;
FldNura: byte;

begin
if CurrClsoObjNun then begin
if (not SStep) then Exit;
CurrCls:=ObjNum;

end;
if ((not SStep) and (CurrObjoLastDisp) and (not Paused))

then Exit;
RestoreUindow(ObjScreen*);
FldNun:=1;
while ObjFCFldNund*.Page=1 do begin

OBGetBuffer(FOata,ObjBuffer,ObjF[FldNun<] *);
with ObjF[Fl(Muii]' do

UriteFast(X,Y,InvC,HakeStr(FData,Len,Oecs,FType));
Inc(FldNum);

end;
LastDisp:=CurrObj;

end;

procedure PutObjInBuffer; ^
{ put the Current object in the display buffer }
begin

if CurrObjonil then Kove(CurrObj*,ObjBuffer*,ObjSize)
else Hove(ObjBBuffer*,ObjBuffer",ObjSize);

end;

procedure ClearCurrObject;
{ clear data from object >
var

FData : DBFDataArray;
FldHum: byte;

begin
FldNum:=1;
while ObjF[FldNum]'.Page=1 do begin
if StripLeft(StripRight(ObjF[FldNum]*.Form,' '),
' •)="BLANK' then begin
OBGetBuffer(FOata,ObjBBuffer,ObjF[FldHum]*);
DBPutBuffer(FData,ObjBuffer,ObjF[FldNum]*);

end;
Inc(FldNum);

end;
end;

www.manaraa.com

function DeleteCurrObject:boolean;
begin

DeleteCurrObject:=False;
if CurrObj=nil then Exit;
TPtr:=CurrObj;
if FirstObj=TPtr then FirstObj:=FirstObj".Next;
if LastObj=TPtr then LastObj:=LastObj".Prev;
if CurrObj'.Prevonil then CurrObJ:=CurrObj'.Prev
else if CurrObj*.Next<>nil then CurrObj:=CurrObj".Hext
else CurrObj:=nil;
if TPtr".Prev<>nil then TPtr*.Prev".Next:=TPtr".Next;
if TPtr'.Nextonil then TPtr*.Next*.Prev:=TPtr'.Prev;
Dispose(TPtr);
PutObjInBuffer;
DeleteCurrObject:=T rue;

end;

function GetNewObject:boolean;
{ allocate a new object and add to end of linked list >
begin

GetNeuObJect:=False;
if MaxAvail<SizeOf(ObjRec)+MinMem then Exit;
CetMem(TPtr,SizeOf(ObjRec));
TPtr*.Prev:=LastObj;
TPtr*.Next:=nil;
if TPtr'.Prevonil then TPtr".Prev*.Next:=TPtr;
CurrObj;=TPtr;
LastObj:=TPtr;
if FirstObj=nil then FirstObj:=TPtr;
Hove(ObjBBuffer',CurrObj*,ObjSize);
GetNewObj ect:=T rue;

end;

function GetNextObject:boolean;
{ get the next object >
begin

GetNextObject:=False;
if CurrObj=nil then Exit;
if CurrObj*.Next=nil then Exit;
CurrObj:=CurrObj'.Next;
PutObjInBuffer;
GetNextObj ect;=T rue;

end;

function GetPrevObject:boolean;
{ get the previous object >
begin

GetPrevObJect:=False;
if CurrObj=nil then Exit;
if CurrObj".Prev=niI then Exit;
CurrObj:=CurrObj".Prev;
PutObjInBuffer;
GetPrevObj ect:=T rue;

end;

procedure GetObject(RType:byte);
{ enter or update an object >
var

FData : DBFDataArray;
Fin : boolean;
FldMutn : byte;
FFld : byte;
Next : byte;

begin
if ((RType=1) and (CurrObj=nil)) then Exit;
Next:=CR;
FldNum:=1;
Fin:=True;
while ObjFCFldNutn] *.Calc do Inc(FldNum);
FFld:=FldNum;
ShowHenu(RType+125);
repeat

Fin:=False;
MoveCOb jBuf fer',ObjTBuffer",0bj Size);
if RType = 2 then begin

Hove(ObjBBuffer',ObJBuffer",ObjSize);
if not GetNeuObject then Next:=ESC;

end;
FldNum:=FFld;
ShowObject;
if NextoESC then repeat

DBGetBufferC FData,ObjBuffer,Obj F[FIdNum]');
DBGetField(FData,Next,ObjF[FldNum]*,RType,InvC,

EHPTYSET);
DBPutBuffer(FData,ObjBuffer,Obj F[FIdNund ');
DBGetNext F i eld(FIdNum,Next,0bj F);

until Next in [ESC,F5,F6,F10];
Fin:=(Next in [ESC,F101);

www.manaraa.com

case Next of
ESC: begin { abort >

HoveCObj TBuffer* ,0bjBuffer *,Obj Size);
if RType=2 then if DeleteCurrObject then ;

end;
F5 ; begin { previous object >

HoveCObjBuffer',CurrObj .ObjSize);
if not GetPrevObject then ;

end;
F6 : begin { next object >

HoveCObjBuffer*,CurrObj*,ObjSize);
if RType=1 then if not GetNextObject then ;

end;
F10: Hove(ObjBuffer',CurrObj*,ObjSize);

end;
ShowObject;

until Fin;
ShowHenuCCmdLiSt);
if HilightConmandCO) then ;

end;

procedure ClearAllObjects;
{ clear data from all objects)
begin

TPtr:=FirstObj;
while TPtronil do begin

ClearCurrObject;
TPtr;=TPtr*.Next;

end;
end;

procedure LoadObjects;
{ load simulation objects from disk }
var

TObj : ObjRec;
ObF : file of ObjRec;

begin
{ delete current objects from memory }
while DeleteCurrObject do ;
(read objects from disk file if the file exists >
if not FileExist(DBMakeName(SimName,1,0bjNum)) then Exit
Assign(0bF,DBHakeName(SimName,1,ObjHum));
Reset(ObF);

while (not EOF(ObF)) do begin
Read(ObF,TObj);
if not GetNewObject then begin

Close(ObF);
HsgCInsufficient memory to load simulation')
Halt;

end;
Hove(TObj,CurrObj*,ObjSize);

end;
Close(ObF);
CurrObj :=F i rstObj;
PutObjInBuffer;
ShowObject;

end;

procedure SaveObjects;
{ save simulation objects to disk >
var

ObF : file of ObjRec;
begin

{ save objects to disk file >
TPtr:=FirstObj;
Ass i gn(ObF,OBHakeHameC SinMame,1,0bjNuro));
Rewrite(ObF);
while TPtronil do begin

Write{ObF,TPtr*);
TPtr:=TPtr*.Next;

end;
Close(ObF);

end;

procedure ReportSimulation;
{ print all object detail }
var

FData : DBFDataArray;
FldNum: byte;

begin
CurrObj:=Fi rstObj;
if CurrObj=nil then Exit;
if not PrinterReady then Exit;
while CurrObjonil do begin

PutObjInBuffer;
FldMum:=1;

www.manaraa.com

while ObjFIFldNutn] ".Page=1 do begin
DBGetBuffer(FOata,ObjBuffer,ObjF[FldNifn] *);
with ObjFCFldNum]* do
if not UritePrt(Title+
': •+HakeStr(FData,Len,Oecs,FType)+PCRLF+PCRLF)
then Exit;

Inc(FldNum);
end;
if not WritePrt(PFF) then Exit;
CurrObj:=CurrObj'.Next;

end;
end;

function PointTo(Loc:InstType):ObjRecPtr;
{ point to the indicated instance }
var

TPtr : ObjRecPtr;
begin

PointTo:=nil;
if FirstObj=nil then Exit;
TPtr:=FirstObj;
while TPtronil do begin

if TPtr".Instance=Loc then begin
PointTo:=TPtr;
Exit;

end;
TPtr;=TPtr*.Next;

end;
PointTo:=TPtr;

end;

procedure SrvQueComplet ion;
{ service/queue completion >
begin

TPtr:=PointTo(MData.ToInst);
if TPtr=nil then Exit;
CurrObj:=TPtr;
PutObjlnSuffer;
ShowObject;
{ message to indicate completion and next route required >
SendMsg(SERVOUE,TPtr.Instance,ENTITY,MData.Fromlnst,

ENTITY_SQ_COHP.O.O,SimClock);
end;

procedure RequestServiceQueueEntry;
{ an entity is requesting entry >
begin

TPtr:=PointTo{HData.ToInst);
if TPtr=nil then Exit;
if TPtr*.CurrQty<TPtr".Capacity then begin

{ set to busy status }
TPtr*.SrvStatus:=BUSY;
TPtr".CurrOty;=TPtr*.CurrQty+1.0;
TPtr .TotalQty:=TPtr .TotalQty+1.0;
{ check for max quantity >
if TPtr*.CurrQty>TPtr'.MaxQty then

TPtr".HaxQty;=TPtr*.CurrQty;

{ check for rain interarrivai time >
if (((SimClock TPtr .LastArrival)>0.0) and

(((SimClock-TPtr .LastArrival)<TPtr .MinTBA) or
(TPtr .MinTBA=0.0)))

then TPtr*,HinTBA:=(SimClock-TPtr".LastArrival);

(check for max interarrivai time >
if <SimClock-TPtr".LastArrival)>TPtr*.HaxTBA then

TPtr".HaxTBA:=(SimClock-TPtr".LastArrival);

{ set mean time between arrivals >
TPtr*.HeanTBA:=((TPtr*.MeanTBA*<TPtr".TotalQty-1.0))+

(Sim Clock-TPtr*.LastArrival))/TPtr*.TotalQty;

{ set last arrival time >
TPtr*.LastArrival:=SimClock;

{ send message indicating request was granted >
SendMsg(SERVOUE,TPtr".Instance.ENTITY,MData.Fromlnst,

REQ_SQ_GRANTEO,0.0,SimClock);
end
else begin { send message indicating request denied }

if MData.Number=0.0 then { no alternate, retry current
SendMsg(SERVQUE,TPtr".Instance,ENTITY,MData.Fromlnst,

REQ_SQ_OENIED,0.0,NextCompT ime(TPtr*.Instance))
else " C there is an alternate route

SendHsg(SERVQUE,TPtr".Instance,EHTITY,MData.F rominst,
REQ_SQ_0ENIED,0.0,SimClock);

end;
CurrObj:=TPtr; PutObjInBuffer; ShowObject;

www.manaraa.com

procedure EntityLeaveSrvQue;
{ tell service/queue that entity is leaving >
begin

TPtr:=PointTo(HData.ToInst>;
if TPtr=nil then Exit;
TPtr".AvgQty:=(((TPtr".TotalQty-1.0)*TPtr".AvgQty)+

TPtr".CurrQty)/TPtr*.TotalQty;
TPtr'.UtiIized;=TPtr".Av9Qty*100.0/TPtr*.Capacity;
TPtr".CurrQty;=TPtr".CurrQty-1.0;
if TPtr*.CurrQty<1.0 then TPtr".SrvStatus;=IDLE;
if ((MData.Number>0.0) and ((MData.Number<TPtr'.MinTime) or

(TPtr .MinTime=0.0))) then TPtr'.MinTime:=MData.Number;
if MData.Nimber>TPtr'.MaxTime then

TPtr".MaxTime:=MData.Number;
TPtr*.HeanTime:=((TPtr'.HeanTime*TPtr".TotalQty)+

MOata.Number)/(TPtr'.TotalQty+1.0);
CurrObj:=TPtr; PutObjInBuffer; ShowObject;

end;

procedure SrvClass(HsgPacket:HsgPacketType);
{ interface to the outside world >
begin

HOata:=HsgPacket;
case MOata.Message of

CLEAR OBJ
DELETË_OBJ
ENTER_OBJ
LOAO_OBJ
SAVE OBJ
SHOW"CURR OBJ
SHOWINEXT~OBJ
SHOW_PREV_OBJ
UPDATE_OBJ
REPORT SIM
REQ_SQ_ENTRY
SQ COMPLETE

ClearAllObjects;
if DeleteCurrObject then ShowObject;
GetObject(2);
LoadObjects;
SaveObjects;
ShowObject;
if GetNextObject then ShowObject;
if GetPrevObject then ShowObject;
GetObject(l);
ReportSinulation;
RequestServiceQueueEntry;
SrvQueConpletion;

ENTITY_LEAVE_SO;Ent i tyLeaveSrvQue;
end;

end;

begin
ObjSize;=SizeOf(ObjRec)-8; { subtract 8 for pointers >
FirstObj:=nil; CurrObj:=nil; LastObj:=nil; LastDisp:=nil;
Object Init(ObjHuni,ObjScreen,ObjBuffer,ObjTBuf fer,

ObjBBuffer.ObjF);
end.

unit SOOPHSG;
{ Message passing unit }

«1 COMPDIRS.PAS)

interface

uses Crt,
SOOPGEN.SOOPGEHI,
SOOPSIH,
SOOPENT,
SOOPRTE,
SOOPSRV;

procedure MessageHandler;
{ main program message handler >

implementation

procedure CheckMessages;
{ check the message queue for pending messages }
var

MOata : MsgPacketType; { avoid pointers to retain data >
TPtr : MsgPacketPtr;
Done : boolean;
MsgNun: byte;

begin
Done:=(F i rstMsg=niI);
while not Done do begin
if Keypressed then Exit; { allows user to interrupt >
if ((FirstMsg".Clock>PRIORITY) and (Paused)) then Exit;
if SStep then begin C display message >

MsgNum:=Ord(Fi rstMsg".Message);
WriteMsg(NormC,'Recv: '*ClsNames[FirstMsg'.FromCls]+

'+FirstMsg".FromInst+
' to '+ClsNames[FirstMsg*.ToClsï+
','+FirstMsg*.ToInst+' "'+SoopMsgs[MsgNum]+'" '+
HakeStr(FirstHsg*.Nuifcer,0,2,'R»)+','+
MakeStr(FirstMsg.Clock,0,2,'R'));

if CetAKey=ESC then begin
Paused:=True;
ShowMenu(l); { show the correct command list >
if HilightCommand(O) then ;
Exit;

end;
end;

{ general routines >
{ simulation object unit >
{ entity object unit >
{ routing object unit }
{ service/queue object unit >

www.manaraa.com

if FirstHsg*.Clock>Si(nClock then begin { update clock >
SinClock:=FirstHsg'.Clock;
SendHsg(HAlLHAN,NINST.SIMULATE,NINST.UPDATE CLOCK,

SimClock,PRIORITY);
end;
MData:=FirstHsg'; (get message from message queue }
TPtr:=FirstHsg; { delete the message & reset pointers >
F i rstHsg:=F i rstHsg *.Next;
Dispose(TPtr);
Dec(HsgCount);
UriteAt(60,1,CHead+HakeStr(HsgCount.5.0.'W));
case MOata.ToCls of { send message to appropriate place }

MAILMAN : case MData.Message of { message to mailman >
END_SIHULATION : begin { end simulation >

Hsg('Simulation completed');
Paused:=True;
ShowHenud);
if HilightCommand(O) then ;

end;
end;

SIMULATE : SimClass(MOata);
ENTITY : EntClass(HOata);
ROUTING : RteClass(HOata};
SERVQUE : SrvClass(MOata);

end;
Oone;={FirstMsg=nil);
if not Done then Done:={FirstMsg*.Clock>PRIORITY>;

end;
end;

procedure ShouSitiMame;
{ show simulation name }
begin

Wri teAt(73,1.CHead+SimName);
end;

procedure ClearHessages;
{ clear the message queue }
var

TPtr ; MsgPacketPtr;
begin

while FirstMsgonil do begin
TPtr:=FirstHsg; FirstMsg:=FirstMsg".Next; Dispose(TPtr);

end;
MsgCount:=0;

end;

procedure SimulationClear;
{ clear the simulation data from all objects >
begin

if not
GetBoolCAre you sure you want to clear the simulation?')

then Exit;
ClearHessages; { clear the message queue >
SimClock:=0.0; { set to a new simulation >
{ send message to each object class to clear itself >
for CurrCls:=HaxClasses downto 1 do

SendMsg(MAILMAN.NINST,CurrCls.NINST.CLEAR Oej.O.O,
PRIORITY);

SendH5g(HAILMAN.NINST,CurrCls.NINST,SH0U_CURR OBJ,0.0.
PRIORITY);

end;

procedure SimulationLoad;
(load a simulation from disk >
var
. TName : string[8];
begin

if not GetBoolCOk to replace current simulation?') then
Exit;

{ get name of simulation to load >
TName:=SimName;
if not

DBGetPrompted(TName,'Enter Simulation Name to Load: ',
'A'.20.12.8,0,InvC.'U',FILECHAR) then Exit;

if StripRight(StripLeft(TName,' '),' ')=" then Exit;
if not FileExist(DBHakeName(TName,1,1)) then
if not GetBooU'Simulation '+TName+
' not found. Create new simulation?') then Exit;

{ set current simulation name and display >
SimName:=TName; ShowSimName;
ClearHessages;
SimClock:=D.O;
Paused:=True;
ShouHenu(l); { show the correct command list }
if HilightCommand(O) then ;
{ send message to each object class to load simulation }
for CurrCls:=HaxClasses downto 1 do

SendHsg(MAILMAN.NINST.CurrCls.NINST,LOAD_OaJ,0.0.
PRIORITY);

SendMsg(MAILHAN,NINST,CurrCls.NINST.SHOW CURR OBJ.0.0,
PRIORITY);

end;

www.manaraa.com

procedure SimulationSave;
{ save a simulation to disk >
var TName : string[8];
begin

{ ask for filename to save >
TName:=SimName;
if not DBGetProcnptedCTName,

'Enter Simulation Name to Save: ','*',20,12,8,0,
InvC,'U',FILECHAR) then Exit;

if StripRight(StripLeft(THame,' '),' ')=" then Exit;
{ if it exists, ask about replacement >
if FileExist(DBHakeName(THame,1,1)) then
if not GetBooU'Simulation '+TMame+
• already exists. Ok to replace?') then Exit;

{ set current simulation name and display }
SimName:=TName;
showsimName;
{ send message to each object class to save itself }
for CurrCls:=HaxClasses downto 1 do

SendHsg(HAILHAN,NINST,CurrCls,NINST,SAVE_OBJ,0.0,
PRIORITY);

SendHsg(HAILHAN,NINST.CurrCls,NINST.SHOU CURR_OBJ,0.0,
PRIORITY);

end;

procedure SimulationReport;
{ print simulation reports }
var CNum : byte;
begin

for CNum:=1 to HaxClasses do { tell each class to report }
SendHsg(HAILHAN,NINST,CNum,NINST,REPORT_SIH,0.0,PRIORITY);

end;

procedure SimulationStartStop;
{ start and stop the simulation }
begin

Paused:=(not Paused); { unpause the simulation }
ShowHenu(l); { show the correct command list)
if HilightCommand(O) then ;
if ((not Paused) and (SimClock=0.0)) then begin

RandSeed;=1; { set the random number seed)
C generate first arrival of all entity types >
SendHsg(MAILHAN,HINST,ROUTING,NINST,GEN_ARR_TIHE,0.0,

SimClock);
end;

end;

procedure SimulationOptions;
{ allow user to change simulation options >
begin

VList[0]:='SIHULATIOM OPTIONS';
VList[1];='Beeper Toggle';
VList[2]:='Single Step Toggle';
case GetListV(32,16,2,1) of

1 : DefBeep := (not OefBeep);
2 : SStep := (not SStep);

end;
end;

procedure HessageHandler;
{ main program message handler >
var

Ch : byte; { working character variable }
H : longint; { temporary memory check variable >

begin
CurrCls :=1; { initialize currently diplayed class >
Paused :=True; { current simulation is paused >
SStep ;=False; { single step is off >
HsgCount:=0; { message count is zero }
SimClock:=0.0; { set to a new simulation >
FirstHsg:=nil; { clear the message queue } oo
UriteAtd.l ,CHead+

'SIMULATION WITH OBJECT-ORIENTED PROGRAMMING
Msg Count: Sim: ');

SimName :=' '; C no current simulation >
ShowMenu(l); { display menu >
if HilightCommand(O) then ; { hilite command list >
SendHsg(MAILHAN,NINST,CurrCIS,NINST,SHOW_CURR_OBJ,0.0,

PRIORITY); { show first class object }
repeat { go into comnand loop >
if CurrConinand>0 then begin { user command pending >

case CurrCommand of
1 : SimulationClear; { clear data in objects }
2 : SendHsg(HAILMAN,NINST,CurrCls,HINST,

DELETEjOBJ,0.0,PRIORITY); { Delete object J
3 : SendMsg(HAILHAN,NINST,CurrCls,NINST,

ENTER_OBJ,0.0,PRIORITY); { Enter object >
4 : SimulationLoad; { Load simulation from disk >
5 : SimulationOptions; { set simulation options >
6 : SimulationStartStop;{ Proceed or Pause }
7 : SimulationReport; { Print simulation reports >
8 : SimulationSave; { Save simulation to disk }

www.manaraa.com

9 : SendHsg(HAILHAN,NINST,CurrCls,NINST,
UPOATEJOBJ,0.0,PRIORITY); { Update object >

10: if GetBoolCAre you sure you want to quit?') then
Halt; { Quit program }

end;
CurrCommand:=0;

end
else if Keypressed then begin

Ch;=KeyBoard(AIIChar+[BACK,CR,ESC,LEFT,RIGHT,PGUP,PGDN,
F5,F6,178],2);

if Ch=ESC then Ch:=81;
case Ch of

178 : begin { show memory >
H:=MaxAvail;
Msg('Memory: '+MakeStr(M,0,0,'L'));

end;
F5 : SendHsg(HAILHAN,NINST,CurrCls,NINST,

SHOW_PREV OBJ,0.0,PRIORnY); I show prev >
F6 : SendHsg(HAILHAN,NINST.CurrCls,NINST,

SHOU_NEXT_OBJ,0.0,PRIORITY); { show next >
PGUP : begin { show previous class and object >

CurrCls:=Succ((CurrCls+MaxClasses-2) mod
HaxClasses);

SendHsg(HAILHAN,NINST,CurrCls,NINST,
SHOW_CURR_OBJ,0.0,PRIORITY);

end;
PGDN : begin { show next class and object }

CurrCls:=Succ(CurrCls mod HaxClasses);
SendHsg(MAILHAN,NINST,CurrCls,NINST,

SHOW_CURR_OBJ,0.0,PRIORITY);
end;

BACK,LEFT : if HilishtCommand(-l) then;
SPACE,RIGHT: if HilightConmandd) then;
13,33..47,58..126: RunCommand(Ch);

end; { case >
end
else CheckMessages;

until False; { never leave loop! Program quits by HALT)
end;

end.

«

	1989
	Toward the development and implementation of object-oriented extensions for discrete-event simulation in a strongly-typed procedural language
	Kurt Hollister Diesch
	Recommended Citation

	tmp.1415660764.pdf.19rdh

